Python day43

@浙大疏锦行 Python day43

python 复制代码
import torch
import numpy as np
import pandas as pd
import torchvision 
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F 
from torch.utils.data import DataLoader, Dataset

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

train_dataloader = DataLoader(
    train_dataset,
    batch_size=32,
    shuffle=True,
)

test_dataloader = DataLoader(
    test_dataset,
    batch_size=32,
    shuffle=False,
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        # Convolutional Layer 1
        self.conv1 = nn.Conv2d(
            in_channels =3,
            out_channels=32,
            padding=2,
            kernel_size=3,
            stride=1
        )
        # Batch Normlization
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU Activation
        self.relu1 = nn.ReLU()

        # CNN Layer 2
        self.conv2 = nn.Conv2d(
            in_channels=32,
            out_channels=64,
            padding=2,
            kernel_size=3,
            stride=1
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()


        # MLP
        self.fc1 = nn.Linear(in_features=64*8*8, out_features=128)

        # Dropout
        self.dropout = nn.Dropout(p=0.5)

        # Output Layer
        self.fc2 = nn.Linear(in_features=128, out_features=10)

    def forward(self,x):
        # CNN layer 1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        # CNN layer 2
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)

        # MLP
        x = x.view(-1, 64*8*8)
        x = self.fc1(x)         # MLP
        x = self.dropout(x)     # Dropout 随机丢弃神经元
        x = self.fc2(x)         # Output Layer
        return x            # 这里的x是未经过softmax的结果

model = Net()
model.to(device)
print(model)

criterion = nn.CrossEntropyLoss()                     # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

def train():
    pass
相关推荐
郝学胜-神的一滴11 分钟前
深入理解前端 Axios 框架:特性、使用场景与最佳实践
开发语言·前端·程序人生·软件工程
jf加菲猫12 分钟前
条款11:优先选用删除函数,而非private未定义函数
开发语言·c++
歪歪10018 分钟前
什么是TCP/UDP/HTTP?
开发语言·网络·网络协议·tcp/ip·http·udp
该用户已不存在23 分钟前
PHP、Python、Node.js,谁能称霸2025?
python·node.js·php
luckys.one24 分钟前
第12篇|[特殊字符] Freqtrade 交易所接入全解:API、WebSocket、限频配置详解
网络·ide·python·websocket·网络协议·flask·流量运营
WangMing_X25 分钟前
C#上位机软件:2.1 .NET项目解决方案的作用
开发语言·c#
Pocker_Spades_A39 分钟前
Python快速入门专业版(四十六):Python类的方法:实例方法、类方法、静态方法与魔术方法
开发语言·python
零雲1 小时前
java面试:可以讲一讲sychronized和ReentrantLock的异同点吗
java·开发语言·面试
cRack_cLick1 小时前
pandas库学习02——基本数据清洗
python·pandas
yubo05091 小时前
YOLO系列——实时屏幕检测
开发语言·windows·python