Python day43

@浙大疏锦行 Python day43

python 复制代码
import torch
import numpy as np
import pandas as pd
import torchvision 
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F 
from torch.utils.data import DataLoader, Dataset

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

train_dataloader = DataLoader(
    train_dataset,
    batch_size=32,
    shuffle=True,
)

test_dataloader = DataLoader(
    test_dataset,
    batch_size=32,
    shuffle=False,
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        # Convolutional Layer 1
        self.conv1 = nn.Conv2d(
            in_channels =3,
            out_channels=32,
            padding=2,
            kernel_size=3,
            stride=1
        )
        # Batch Normlization
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU Activation
        self.relu1 = nn.ReLU()

        # CNN Layer 2
        self.conv2 = nn.Conv2d(
            in_channels=32,
            out_channels=64,
            padding=2,
            kernel_size=3,
            stride=1
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()


        # MLP
        self.fc1 = nn.Linear(in_features=64*8*8, out_features=128)

        # Dropout
        self.dropout = nn.Dropout(p=0.5)

        # Output Layer
        self.fc2 = nn.Linear(in_features=128, out_features=10)

    def forward(self,x):
        # CNN layer 1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        # CNN layer 2
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)

        # MLP
        x = x.view(-1, 64*8*8)
        x = self.fc1(x)         # MLP
        x = self.dropout(x)     # Dropout 随机丢弃神经元
        x = self.fc2(x)         # Output Layer
        return x            # 这里的x是未经过softmax的结果

model = Net()
model.to(device)
print(model)

criterion = nn.CrossEntropyLoss()                     # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

def train():
    pass
相关推荐
曲幽5 分钟前
一文理清FastAPI参数:从Query、Path到BaseModel的实战指南
python·fastapi·web·form·request·path·body·query·basemodel
veminhe5 分钟前
Python(一) 语⾔的基本数据类型和基本运算操作
python
yaoxin5211239 分钟前
277. Java Stream API - 去重与排序:Stream 中的 distinct() 与 sorted()
java·开发语言
paopao_wu10 分钟前
AI应用开发-Python:Embedding
人工智能·python·embedding
棒棒的皮皮10 分钟前
【OpenCV】Python图像处理形态学之核函数
图像处理·python·opencv·计算机视觉
黎雁·泠崖18 分钟前
C 语言预处理(下):宏与函数对比 +#/## 运算符 + 条件编译 + 头文件包含
c语言·开发语言
默默前行的虫虫21 分钟前
NiceGUI 文件上传图片总结
python
神气龙22 分钟前
VS Code连接wsl上Conda虚拟环境,打开Jupyter Notebook
ide·python·jupyter
棒棒的皮皮22 分钟前
【OpenCV】Python图像处理形态学之礼帽黑帽运算
图像处理·python·opencv·计算机视觉
zhousenshan23 分钟前
浅谈Python学习经验
python