Python day43

@浙大疏锦行 Python day43

python 复制代码
import torch
import numpy as np
import pandas as pd
import torchvision 
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F 
from torch.utils.data import DataLoader, Dataset

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

train_dataloader = DataLoader(
    train_dataset,
    batch_size=32,
    shuffle=True,
)

test_dataloader = DataLoader(
    test_dataset,
    batch_size=32,
    shuffle=False,
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        # Convolutional Layer 1
        self.conv1 = nn.Conv2d(
            in_channels =3,
            out_channels=32,
            padding=2,
            kernel_size=3,
            stride=1
        )
        # Batch Normlization
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU Activation
        self.relu1 = nn.ReLU()

        # CNN Layer 2
        self.conv2 = nn.Conv2d(
            in_channels=32,
            out_channels=64,
            padding=2,
            kernel_size=3,
            stride=1
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()


        # MLP
        self.fc1 = nn.Linear(in_features=64*8*8, out_features=128)

        # Dropout
        self.dropout = nn.Dropout(p=0.5)

        # Output Layer
        self.fc2 = nn.Linear(in_features=128, out_features=10)

    def forward(self,x):
        # CNN layer 1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        # CNN layer 2
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)

        # MLP
        x = x.view(-1, 64*8*8)
        x = self.fc1(x)         # MLP
        x = self.dropout(x)     # Dropout 随机丢弃神经元
        x = self.fc2(x)         # Output Layer
        return x            # 这里的x是未经过softmax的结果

model = Net()
model.to(device)
print(model)

criterion = nn.CrossEntropyLoss()                     # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

def train():
    pass
相关推荐
LNN20224 分钟前
Qt 5.8.0 下实现触摸屏热插拔功能的探索与实践(3)
开发语言·qt
移远通信8 分钟前
配网-复杂场景
服务器·开发语言·php
Dr.Kun12 分钟前
【鲲码园Python】基于pytorch的鸟品种分类系统(25类)
pytorch·python·分类
一只小bit21 分钟前
Qt 快速开始:安装配置并创建简单标签展示
开发语言·前端·c++·qt·cpp
wadesir22 分钟前
深入理解Rust静态生命周期(从零开始掌握‘static的奥秘)
开发语言·后端·rust
是有头发的程序猿32 分钟前
Python爬虫实战:面向对象编程在淘宝商品数据抓取中的应用
开发语言·爬虫·python
Query*43 分钟前
杭州2024.08 Java开发岗面试题分类整理【附面试技巧】
java·开发语言·面试
萑澈1 小时前
Windows系统Anaconda/Miniconda的安装、配置、基础使用、清理缓存空间和Pycharm/VSCode配置指南
python
Onebound_Ed1 小时前
Python爬虫进阶:面向对象设计构建高可维护的1688商品数据采集系统
开发语言·爬虫·python