零基础搞定Spring AI 调用本地大模型

1. 前置条件

在开始之前,请确保你满足以下条件:

  1. JDK 环境

    • 必须使用 JDK 17 或以上(Spring Boot 3.x 要求)
    • 推荐使用 JDK 21(长期支持 LTS)
  2. Ollama 安装

    • macOS 用户(本教程示例默认)

      sql 复制代码
      brew install ollama
      brew services start ollama
    • Windows 用户

      访问 Ollama 官网 下载并安装,启动服务即可。


2. 安装 Ollama & 下载本地千问模型(也可选择其他开源模型)

bash 复制代码
# 安装 Ollama(macOS 示例)
brew install ollama

# 启动 Ollama 服务
brew services start ollama

# 下载通义千问本地模型
ollama pull qwen3:1.7b

# 查看本地模型列表
ollama list

# 查看模型详情
ollama show qwen3:1.7b

3. Ollama 常用命令

bash 复制代码
brew services list            # 查看服务状态
brew services start ollama    # 启动服务
brew services restart ollama  # 重启服务
brew services stop ollama     # 停止服务
ollama ps                     # 查看运行中的模型实例
ollama rm qwen3:1.7b          # 删除模型
ollama run qwen3:1.7b         # 运行模型
/bye 或 Ctrl+C                # 停止运行模型

4. 添加应用配置

application.properties(本地 Ollama 示例)

ini 复制代码
# 本地 Ollama 配置
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat.options.model=qwen3:1.7b
spring.ai.ollama.chat.options.temperature=0.7

Maven 依赖

  • 调用本地大模型(Ollama) → Spring AI 官方依赖

    xml 复制代码
    ```
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-model-ollama</artifactId>
        <version>1.0.1</version>
    </dependency>
    ```

5. 编写控制器代码

typescript 复制代码
@RestController
@RequestMapping("/api/chat")
public class ChatController {
    private final ChatClient chatClient;

    public ChatController(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.build();
    }

    // GET 请求测试
    @GetMapping
    public String chatGet(@RequestParam(required = false, defaultValue = "你好") String message) {
        return processChat(message);
    }

    // POST 请求
    @PostMapping
    public String chatPost(@RequestBody Map<String, String> request) {
        String message = request.getOrDefault("message", "你好");
        return processChat(message);
    }

    private String processChat(String userMessage) {
        String prompt = "你是一个AI助手,请根据用户的问题返回结果";
        return chatClient.prompt(prompt)
                .user(userMessage)
                .call()
                .content();
    }
}

6. 测试接口

浏览器 GET 请求

bash 复制代码
http://localhost:8080/api/chat?message=你是谁?

Postman POST 请求

bash 复制代码
POST http://localhost:8080/api/chat
Body:
{
    "message": "介绍一下你自己"
}
相关推荐
一切尽在,你来15 小时前
第二章 预告内容
人工智能·langchain·ai编程
草梅友仁15 小时前
墨梅博客 1.4.0 发布与开源动态 | 2026 年第 6 周草梅周报
开源·github·ai编程
孟健18 小时前
吹爆 OpenClaw!一个人 +6 个 AI 助理,我再也不想招人了
openai·agent·ai编程
周末程序猿18 小时前
再谈Agent Loop:大模型 “能做事” 的核心机制
agent·ai编程
皮卡丘不断更19 小时前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程
冬奇Lab19 小时前
Hook 机制实战:让 ClaudeCode 主动通知你
ai编程·claude
码路飞19 小时前
语音 AI Agent 延迟优化实战:我是怎么把响应时间从 2 秒干到 500ms 以内的
ai编程
海石1 天前
去到比北方更北的地方—2025年终总结
前端·ai编程·年终总结
forgetAndforgive1 天前
免费使用cc opus 4.6等顶级模型,注册送三天plus会员!白嫖活动又来了
chatgpt·ai编程
玄同7651 天前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae