零基础搞定Spring AI 调用本地大模型

1. 前置条件

在开始之前,请确保你满足以下条件:

  1. JDK 环境

    • 必须使用 JDK 17 或以上(Spring Boot 3.x 要求)
    • 推荐使用 JDK 21(长期支持 LTS)
  2. Ollama 安装

    • macOS 用户(本教程示例默认)

      sql 复制代码
      brew install ollama
      brew services start ollama
    • Windows 用户

      访问 Ollama 官网 下载并安装,启动服务即可。


2. 安装 Ollama & 下载本地千问模型(也可选择其他开源模型)

bash 复制代码
# 安装 Ollama(macOS 示例)
brew install ollama

# 启动 Ollama 服务
brew services start ollama

# 下载通义千问本地模型
ollama pull qwen3:1.7b

# 查看本地模型列表
ollama list

# 查看模型详情
ollama show qwen3:1.7b

3. Ollama 常用命令

bash 复制代码
brew services list            # 查看服务状态
brew services start ollama    # 启动服务
brew services restart ollama  # 重启服务
brew services stop ollama     # 停止服务
ollama ps                     # 查看运行中的模型实例
ollama rm qwen3:1.7b          # 删除模型
ollama run qwen3:1.7b         # 运行模型
/bye 或 Ctrl+C                # 停止运行模型

4. 添加应用配置

application.properties(本地 Ollama 示例)

ini 复制代码
# 本地 Ollama 配置
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat.options.model=qwen3:1.7b
spring.ai.ollama.chat.options.temperature=0.7

Maven 依赖

  • 调用本地大模型(Ollama) → Spring AI 官方依赖

    xml 复制代码
    ```
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-model-ollama</artifactId>
        <version>1.0.1</version>
    </dependency>
    ```

5. 编写控制器代码

typescript 复制代码
@RestController
@RequestMapping("/api/chat")
public class ChatController {
    private final ChatClient chatClient;

    public ChatController(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.build();
    }

    // GET 请求测试
    @GetMapping
    public String chatGet(@RequestParam(required = false, defaultValue = "你好") String message) {
        return processChat(message);
    }

    // POST 请求
    @PostMapping
    public String chatPost(@RequestBody Map<String, String> request) {
        String message = request.getOrDefault("message", "你好");
        return processChat(message);
    }

    private String processChat(String userMessage) {
        String prompt = "你是一个AI助手,请根据用户的问题返回结果";
        return chatClient.prompt(prompt)
                .user(userMessage)
                .call()
                .content();
    }
}

6. 测试接口

浏览器 GET 请求

bash 复制代码
http://localhost:8080/api/chat?message=你是谁?

Postman POST 请求

bash 复制代码
POST http://localhost:8080/api/chat
Body:
{
    "message": "介绍一下你自己"
}
相关推荐
岁月宁静几秒前
软件开发工程师如何借助 AI 工具进行软件自测
前端·ai编程·测试
我家领养了个白胖胖19 分钟前
向量化和向量数据库redisstack使用
java·后端·ai编程
前端小板凳27 分钟前
前端-你学什么AI呀
ai编程
用户479492835691529 分钟前
拆包、立边界、可发布:Gemini CLI 的 Monorepo 设计我学到了什么
aigc·agent·ai编程
Mintopia2 小时前
🎩 AIGC技术提升Web服务效率的量化分析:从成本到体验
人工智能·llm·ai编程
~央千澈~3 小时前
序章《程序员进化:AI 编程革命》——用 Cursor 驱动的游戏开发实战作者:卓伊凡
人工智能·ai编程
Karl_wei4 小时前
AI 只会淘汰不用 AI 的程序员🥚
aigc·ai编程·cursor
树獭非懒15 小时前
AI 大模型应用开发|基础原理
人工智能·aigc·ai编程
realhuizhu17 小时前
你的代码正在腐烂:为什么我们都不敢碰那座“屎山”?
ai编程·软件架构·代码重构·deepseek·技术债务
京东零售技术17 小时前
邀你一起体验|OxyGent 多智能体协作框架新版本发布 3个月1700位开发者实测认证
ai编程