【数据可视化】基孔肯雅热病例数据分析与可视化:Python + pyecharts洞察疫情动态

🧑 博主简介:曾任某智慧城市类企业算法总监,CSDN / 稀土掘金 等平台人工智能领域优质创作者。
目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。


一、引言

在公共卫生领域,疫情数据的分析和可视化是理解疫情趋势、制定应对策略的关键工具。本文将利用Python和pyecharts库对基孔肯雅热病例数据进行深入分析和可视化,旨在为相关部门和公众提供数据支持和洞察。

二、数据概览

我们的数据集包含了以下关键信息:

  1. 广东佛山顺德区2025-7-21至2025-8-11日的每日新增病例和累积病理。
  2. 广东佛山各个区2025-8-11日各区新增病例数。
  3. 全国各省风险等级划分数据。

三、数据可视化

为了更好地理解数据,我们将绘制以下几种图表:

  1. 广东佛山顺德区每日新增折线图
  2. 累积病理面积图
  3. 广东佛山各个区2025-8-11日各区新增病例数饼图
  4. 广东佛山各个区2025-8-11日各区新增病例数玫瑰图
  5. 广东佛山各个区2025-8-11日各区新增病例地图
  6. 全国各省风险等级划分地图

3.1 广东佛山顺德区每日新增折线图

less 复制代码
# 1. 广东佛山顺德区每日新增折线图
line_chart = (
    Line()
    .add_xaxis(df_shunde['日期'].tolist())
    .add_yaxis("新增病例", df_shunde['新增病例'].tolist())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="广东佛山顺德区每日新增病例折线图"),
        xaxis_opts=opts.AxisOpts(name="日期"),
        yaxis_opts=opts.AxisOpts(name="新增病例数"),
    )
)

3.2 累积病理面积图

less 复制代码
area_chart = (
    Line()
    .add_xaxis(df_shunde['日期'].tolist())
    .add_yaxis("累积病例", df_shunde['累计病例'].tolist(), areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
)

3.3 广东佛山各个区2025-8-11日各区新增病例数饼图

ini 复制代码
pie_chart = (
    Pie()
    .add(
        series_name="新增病例",
        data_pair=[list(z) for z in zip(df_foshan['区域'].tolist(), df_foshan['病例'].tolist())],
        radius=["30%", "75%"],
        center=["50%", "50%"]
    )
)

3.4 广东佛山各个区2025-8-11日各区新增病例数玫瑰图

less 复制代码
polar_chart = (
    Polar()
    .add_schema(
        angleaxis_opts=opts.AngleAxisOpts(data=df_foshan['区域'].tolist(), type_="category")
    )
    .add(
        "新增病例数",
        df_foshan['病例'].tolist(),
        type_="bar"
    )
)

3.5 广东佛山各个区2025-8-11日各区新增病例地图

less 复制代码
map_chart = (
    Map()
    .add("新增病例", [list(z) for z in zip(df_foshan['区域'].tolist(), df_foshan['病例'].tolist())], "佛山")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="广东佛山各个区新增病例地图"),
        visualmap_opts=opts.VisualMapOpts(max_=70),
    )
)

3.6 全国各省风险等级划分地图

less 复制代码
national_map = (
    Map()
    .add("风险等级", [list(z) for z in zip(df_national['省份1'].tolist(), df_national['风险等级'].tolist())], "china")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="全国各省风险等级划分地图"),
        visualmap_opts=opts.VisualMapOpts(max_=4),
    )
)

四、创建可视化大屏

ini 复制代码
page = Page(
    page_title="基孔肯雅热病例数据分析大屏",
    layout=Page.DraggablePageLayout
)

page.add(line_chart, area_chart, pie_chart, polar_chart, map_chart, national_map)
page.render("bikunyeh_disease_analysis_dashboard.html")

五、结论

通过上述分析,我们可以得出以下结论:

  1. 广东佛山顺德区的疫情波动较大,需要持续关注和防控。
  2. 累积病例数的增长趋势需要进一步分析,以预测疫情的未来发展。
  3. 不同区域的疫情严重程度存在差异,需要针对性的防控措施。

如果您在人工智能领域遇到技术难题,或是需要专业支持,无论是技术咨询、项目开发还是个性化解决方案,我都可以为您提供专业服务,如有需要可站内私信或添加下方VX名片(ID:xf982831907)

期待与您一起交流,共同探索AI的更多可能!

相关推荐
geobuilding19 小时前
将大规模shp白模贴图转3dtiles倾斜摄影,并可单体化拾取建筑
算法·3d·智慧城市·数据可视化·贴图
小白跃升坊2 天前
数据分析报表如何选?详解 DataEase 四大表格:明细表、汇总表、透视表与热力图的适用场景与选择策略
数据挖掘·数据分析·开源软件·数据可视化·dataease
数据科学项目实践3 天前
Matplotlib 简单教程 3:坐标轴\边框设置
数据可视化
IT小哥哥呀5 天前
Python实用技巧:批量处理Excel数据并生成销售报表(含实战案例)
python·pandas·数据可视化·数据处理·报表生成·excel自动化·办公神器
大飞码农6 天前
📊 开源了一个 Git 代码统计神器,解决了团队代码量统计的 N 个痛点
git·数据可视化
西***634711 天前
怕故障?怕扩展难?分布式可视化控制:给足场景安全感
分布式·数据可视化
Aloudata技术团队11 天前
以 NoETL 指标语义层为核心:打造可信、智能的 Data Agent 产品实践
数据挖掘·数据分析·数据可视化
爱思德学术11 天前
中国计算机学会(CCF)推荐学术会议-B(数据库/数据挖掘/内容检索):PODS 2026
数据库·数据分析·数据可视化·数据库系统
Serendipity_Carl14 天前
爬虫数据清洗可视化案例之全球灾害数据
爬虫·python·pycharm·数据可视化·数据清洗
青云交14 天前
Java 大视界 -- Java 大数据在智能建筑能耗监测与节能策略制定中的应用
数据分析·数据存储·数据可视化·1024程序员节·能耗监测·java 大数据·智能建筑