-
多类感知机算法:为每个类别学习一个独立的判别函数。通过梯度下降优化权重,使得对每个样本,其真实类别的判别值大于其他类别。
-
决策规则:对测试样本选择判别函数值最大的类别作为预测结果。
程序代码:
python
import random
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler
data_dict = {}
train_data = {}
test_data = {}
matplotlib.rcParams.update({'font.size': 7})
with open('Iris数据txt版.txt', 'r') as file:
for line in file:
line = line.strip()
data = line.split('\t')
if len(data) >= 3:
try:
category = data[0]
attribute1 = eval(data[1])
attribute2 = eval(data[3])
if category in ['1', '2', '3']:
if category not in data_dict:
data_dict[category] = {'Length': [], 'Width': []}
data_dict[category]['Length'].append(attribute1)
data_dict[category]['Width'].append(attribute2)
except ValueError:
print(f"Invalid data in line: {line}")
continue
for category, attributes in data_dict.items():
print(f'种类: {category}')
print(len(attributes["Length"]))
print(len(attributes["Width"]))
print(f'属性1: {attributes["Length"]}')
print(f'属性2: {attributes["Width"]}')
for category, attributes in data_dict.items():
lengths = attributes['Length']
widths = attributes['Width']
train_indices = random.sample(range(len(lengths)), 45)
test_indices = [i for i in range(len(lengths)) if i not in train_indices]
train_data[category] = {
'Length': [lengths[i] for i in train_indices],
'Width': [widths[i] for i in train_indices]
}
test_data[category] = {
'Length': [lengths[i] for i in test_indices],
'Width': [widths[i] for i in test_indices]
}
print(len(train_data['1']['Length']))
print(train_data['1'])
print(len(test_data['1']['Length']))
print(test_data['1'])
print(len(train_data['2']['Length']))
print(train_data['2'])
print(len(test_data['2']['Length']))
print(test_data['2'])
print(len(train_data['3']['Length']))
print(train_data['3'])
print(len(test_data['3']['Length']))
print(test_data['3'])
plt.scatter(train_data['1']['Length'], train_data['1']['Width'], color='silver', label='Category 1')
plt.scatter(train_data['2']['Length'], train_data['2']['Width'], color='paleturquoise', label='Category 2')
plt.scatter(train_data['3']['Length'], train_data['3']['Width'], color='gold', label='Category 3')
plt.xlabel('Length')
plt.ylabel('Width')
plt.legend()
plt.title('Basic Dataset Distribution')
plt.show()
train_data_merge = []
label_data_merge = []
for category in ['1','2','3']:
for i in range(45):
attribute1 = train_data[category]['Length'][i]
attribute2 = train_data[category]['Width'][i]
merged_point = [attribute1, attribute2, 1]
train_data_merge.append(merged_point)
label_data_merge.append(int(category)-1)
#train_data_merge = StandardScaler().fit_transform(train_data_merge)
print(train_data_merge)
print(len(train_data_merge))
print(label_data_merge)
print(len(label_data_merge))
lines = np.zeros([3,3])
epochs = 5000
#initial_learning_rate = 0.5
learning_rate_right = 0.5
learning_rate_wrong = 0.5
for i in range(epochs):
for j in range(135):
for k in range(3):
if k != label_data_merge[j]:
#print(train_data_merge[category1][j])
pright = np.dot(train_data_merge[j], lines[label_data_merge[j]])
pwrong = np.dot(train_data_merge[j], lines[k])
if pwrong >= pright:
gradient_right = np.array(train_data_merge[j])
gradient_wrong = np.array(train_data_merge[j])
#p_diff = abs(pwrong - pright)
#a13_square_sum = sum(x ** 2 for x in gradient_right)
#learning_rate_right = initial_learning_rate * p_diff / a13_square_sum
#a13_square_sum = sum(x ** 2 for x in gradient_wrong)
#learning_rate_wrong = initial_learning_rate * p_diff / a13_square_sum
#print(gradient_right,gradient_wrong)
lines[label_data_merge[j]] += learning_rate_right * gradient_right
lines[k] -= learning_rate_wrong * gradient_wrong
#print(lines[label_data_merge[j]])
#print(lines[k])
print(lines)
min_x = min(min(train_data['1']['Length']), min(train_data['2']['Length']), min(train_data['3']['Length']))
max_x = max(max(train_data['1']['Length']), max(train_data['2']['Length']), max(train_data['3']['Length']))
x_range = np.linspace(min_x,max_x,int(100*(max_x-min_x)))
k1 = -lines[0][0]/lines[0][1]
k2 = -lines[1][0]/lines[1][1]
k3 = -lines[2][0]/lines[2][1]
b1 = -lines[0][2]/lines[0][1]
b2 = -lines[1][2]/lines[1][1]
b3 = -lines[2][2]/lines[2][1]
y_range1 = k1*x_range + b1
y_range2 = k2*x_range + b2
y_range3 = k3*x_range + b3
correct_predictions = 0
test_data_merge = []
test_label = []
for category in ['1','2','3']:
for i in range(5):
attribute1 = test_data[category]['Length'][i]
attribute2 = test_data[category]['Width'][i]
merged_point = [attribute1, attribute2]
test_data_merge.append(merged_point)
test_label.append(int(category)-1)
# 计算判别函数的值,并分类
for category in ['1', '2', '3']:
for i in range(5):
attribute1 = test_data[category]['Length'][i]
attribute2 = test_data[category]['Width'][i]
discriminant_values = []
for line in lines:
discriminant_value = line[0] * attribute1 + line[1] * attribute2 + line[2]
discriminant_values.append(discriminant_value)
predicted_category = np.argmax(discriminant_values) + 1
if predicted_category == int(category):
correct_predictions += 1
accuracy = correct_predictions / (5 * 3)
print(f"准确率: {accuracy:.2f}%")
plt.plot(x_range, y_range1, color='r', label='Category 1 Line')
plt.plot(x_range, y_range2, color='g', label='Category 2 Line')
plt.plot(x_range, y_range3, color='b', label='Category 3 Line')
plt.scatter(train_data['1']['Length'], train_data['1']['Width'], color='silver', label='Category 1')
plt.scatter(train_data['2']['Length'], train_data['2']['Width'], color='paleturquoise', label='Category 2')
plt.scatter(train_data['3']['Length'], train_data['3']['Width'], color='gold', label='Category 3')
for i in range(len(test_data_merge)):
attribute1 = test_data_merge[i][0]
attribute2 = test_data_merge[i][1]
true_label = test_label[i]
# 计算判别函数的值
discriminant_values = []
for line in lines:
discriminant_value = line[0] * attribute1 + line[1] * attribute2 + line[2]
discriminant_values.append(discriminant_value)
# 预测的类别
predicted_category = np.argmax(discriminant_values) + 1
# 根据预测是否正确选择标记形状和颜色
marker = 'D' if predicted_category == true_label + 1 else 'X'
color = ['gray', 'teal', 'darkgoldenrod'][true_label]
plt.scatter(attribute1, attribute2, color=color, label=f'Test Category {true_label + 1}', marker=marker)
plt.xlabel('Length')
plt.ylabel('Width')
plt.legend()
plt.title('Multi-class Classifier')
plt.show()
运行结果:
种类: 1
50
50
属性1: [5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0]
属性2: [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4]
种类: 2
50
50
属性1: [7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7]
属性2: [4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1]
种类: 3
50
50
属性1: [6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
属性2: [6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5, 5.2, 5.4, 5.1]
45
{'Length': [4.4, 4.8, 5.1, 5.4, 5.2, 4.3, 5.1, 5.2, 5.0, 5.1, 5.1, 4.6, 5.7, 5.0, 4.5, 4.6, 4.8, 5.8, 4.4, 4.9, 5.4, 5.0, 5.2, 5.7, 5.5, 5.1, 4.4, 5.3, 5.0, 5.4, 5.0, 4.8, 4.7, 5.4, 5.5, 5.0, 4.6, 5.1, 4.9, 5.1, 4.9, 5.0, 4.6, 4.9, 5.1], 'Width': [1.3, 1.4, 1.7, 1.5, 1.5, 1.1, 1.4, 1.4, 1.4, 1.6, 1.5, 1.5, 1.7, 1.6, 1.3, 1.0, 1.6, 1.2, 1.4, 1.4, 1.3, 1.3, 1.5, 1.5, 1.3, 1.5, 1.3, 1.5, 1.5, 1.7, 1.4, 1.6, 1.3, 1.7, 1.4, 1.6, 1.4, 1.4, 1.4, 1.9, 1.5, 1.2, 1.4, 1.5, 1.5]}
5
{'Length': [5.4, 4.8, 4.8, 4.7, 5.0], 'Width': [1.5, 1.4, 1.9, 1.6, 1.6]}
45
{'Length': [6.1, 5.4, 5.7, 6.2, 5.2, 6.7, 5.7, 6.5, 6.4, 6.4, 6.7, 6.3, 6.7, 6.3, 5.5, 6.8, 5.7, 5.6, 5.9, 6.2, 5.6, 5.0, 6.3, 5.5, 5.8, 6.0, 5.1, 6.1, 4.9, 6.6, 6.0, 6.1, 5.0, 5.5, 5.8, 5.6, 5.6, 5.5, 7.0, 6.0, 6.0, 6.1, 5.7, 5.6, 6.9], 'Width': [4.7, 4.5, 4.5, 4.5, 3.9, 4.7, 4.2, 4.6, 4.5, 4.3, 4.4, 4.9, 5.0, 4.7, 4.4, 4.8, 3.5, 4.5, 4.2, 4.3, 4.2, 3.3, 4.4, 3.7, 4.0, 4.5, 3.0, 4.6, 3.3, 4.6, 4.0, 4.0, 3.5, 3.8, 4.1, 4.1, 3.9, 4.0, 4.7, 4.5, 5.1, 4.7, 4.2, 3.6, 4.9]}
5
{'Length': [5.9, 6.6, 5.8, 5.5, 5.7], 'Width': [4.8, 4.4, 3.9, 4.0, 4.1]}
45
{'Length': [7.2, 7.9, 7.7, 6.3, 6.1, 5.7, 6.4, 6.0, 6.3, 6.0, 6.3, 7.7, 7.3, 6.5, 5.6, 7.1, 7.7, 5.8, 5.8, 6.5, 6.2, 6.2, 6.4, 6.7, 6.4, 6.7, 5.9, 6.3, 4.9, 7.4, 7.2, 6.9, 6.5, 7.7, 5.8, 6.8, 6.4, 6.3, 7.2, 6.5, 6.7, 6.9, 6.7, 6.9, 6.3], 'Width': [6.0, 6.4, 6.7, 5.1, 4.9, 5.0, 5.6, 4.8, 4.9, 5.0, 5, 6.7, 6.3, 5.8, 4.9, 5.9, 6.9, 5.1, 5.1, 5.5, 5.4, 4.8, 5.3, 5.7, 5.6, 5.8, 5.1, 5.6, 4.5, 6.1, 5.8, 5.7, 5.2, 6.1, 5.1, 5.5, 5.5, 5.6, 6.1, 5.1, 5.7, 5.1, 5.2, 5.4, 6.0]}
5
{'Length': [7.6, 6.4, 6.1, 6.7, 6.8], 'Width': [6.6, 5.3, 5.6, 5.6, 5.9]}
\[4.4, 1.3, 1\], \[4.8, 1.4, 1\], \[5.1, 1.7, 1\], \[5.4, 1.5, 1\], \[5.2, 1.5, 1\], \[4.3, 1.1, 1\], \[5.1, 1.4, 1\], \[5.2, 1.4, 1\], \[5.0, 1.4, 1\], \[5.1, 1.6, 1\], \[5.1, 1.5, 1\], \[4.6, 1.5, 1\], \[5.7, 1.7, 1\], \[5.0, 1.6, 1\], \[4.5, 1.3, 1\], \[4.6, 1.0, 1\], \[4.8, 1.6, 1\], \[5.8, 1.2, 1\], \[4.4, 1.4, 1\], \[4.9, 1.4, 1\], \[5.4, 1.3, 1\], \[5.0, 1.3, 1\], \[5.2, 1.5, 1\], \[5.7, 1.5, 1\], \[5.5, 1.3, 1\], \[5.1, 1.5, 1\], \[4.4, 1.3, 1\], \[5.3, 1.5, 1\], \[5.0, 1.5, 1\], \[5.4, 1.7, 1\], \[5.0, 1.4, 1\], \[4.8, 1.6, 1\], \[4.7, 1.3, 1\], \[5.4, 1.7, 1\], \[5.5, 1.4, 1\], \[5.0, 1.6, 1\], \[4.6, 1.4, 1\], \[5.1, 1.4, 1\], \[4.9, 1.4, 1\], \[5.1, 1.9, 1\], \[4.9, 1.5, 1\], \[5.0, 1.2, 1\], \[4.6, 1.4, 1\], \[4.9, 1.5, 1\], \[5.1, 1.5, 1\], \[6.1, 4.7, 1\], \[5.4, 4.5, 1\], \[5.7, 4.5, 1\], \[6.2, 4.5, 1\], \[5.2, 3.9, 1\], \[6.7, 4.7, 1\], \[5.7, 4.2, 1\], \[6.5, 4.6, 1\], \[6.4, 4.5, 1\], \[6.4, 4.3, 1\], \[6.7, 4.4, 1\], \[6.3, 4.9, 1\], \[6.7, 5.0, 1\], \[6.3, 4.7, 1\], \[5.5, 4.4, 1\], \[6.8, 4.8, 1\], \[5.7, 3.5, 1\], \[5.6, 4.5, 1\], \[5.9, 4.2, 1\], \[6.2, 4.3, 1\], \[5.6, 4.2, 1\], \[5.0, 3.3, 1\], \[6.3, 4.4, 1\], \[5.5, 3.7, 1\], \[5.8, 4.0, 1\], \[6.0, 4.5, 1\], \[5.1, 3.0, 1\], \[6.1, 4.6, 1\], \[4.9, 3.3, 1\], \[6.6, 4.6, 1\], \[6.0, 4.0, 1\], \[6.1, 4.0, 1\], \[5.0, 3.5, 1\], \[5.5, 3.8, 1\], \[5.8, 4.1, 1\], \[5.6, 4.1, 1\], \[5.6, 3.9, 1\], \[5.5, 4.0, 1\], \[7.0, 4.7, 1\], \[6.0, 4.5, 1\], \[6.0, 5.1, 1\], \[6.1, 4.7, 1\], \[5.7, 4.2, 1\], \[5.6, 3.6, 1\], \[6.9, 4.9, 1\], \[7.2, 6.0, 1\], \[7.9, 6.4, 1\], \[7.7, 6.7, 1\], \[6.3, 5.1, 1\], \[6.1, 4.9, 1\], \[5.7, 5.0, 1\], \[6.4, 5.6, 1\], \[6.0, 4.8, 1\], \[6.3, 4.9, 1\], \[6.0, 5.0, 1\], \[6.3, 5, 1\], \[7.7, 6.7, 1\], \[7.3, 6.3, 1\], \[6.5, 5.8, 1\], \[5.6, 4.9, 1\], \[7.1, 5.9, 1\], \[7.7, 6.9, 1\], \[5.8, 5.1, 1\], \[5.8, 5.1, 1\], \[6.5, 5.5, 1\], \[6.2, 5.4, 1\], \[6.2, 4.8, 1\], \[6.4, 5.3, 1\], \[6.7, 5.7, 1\], \[6.4, 5.6, 1\], \[6.7, 5.8, 1\], \[5.9, 5.1, 1\], \[6.3, 5.6, 1\], \[4.9, 4.5, 1\], \[7.4, 6.1, 1\], \[7.2, 5.8, 1\], \[6.9, 5.7, 1\], \[6.5, 5.2, 1\], \[7.7, 6.1, 1\], \[5.8, 5.1, 1\], \[6.8, 5.5, 1\], \[6.4, 5.5, 1\], \[6.3, 5.6, 1\], \[7.2, 6.1, 1\], \[6.5, 5.1, 1\], \[6.7, 5.7, 1\], \[6.9, 5.1, 1\], \[6.7, 5.2, 1\], \[6.9, 5.4, 1\], \[6.3, 6.0, 1\]
135
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
135
\[ 58.9 -90.95 30.
-0.25 -44.65 216.5
-58.65 135.6 -246.5 \]
准确率: 0.87%
进程已结束,退出代码0

