原型代码
- 内存模型:
- 核心变量:
frame
,Numpy ndarray,每次会被覆盖,大小保持恒定
- 核心变量:
python
import cv2
video_path = 'your_video.mp4'
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Can't open Video")
exit()
while True:
ret, frame = cap.read()
if not ret:
break
#
# 在这里对每一帧进行处理
# cv2.imshow('Frame', frame)
if cv2.waitKey(25) & OxFF == ord('q'): # 25ms内,有按钮按下,且按下的按钮为q
break
cap.release()
cv2.destroyAllWindows()
函数封装
对其进行一个函数封装,传入一个process函数,其对每个frame进行统一的处理,然后输出一个处理后的视频。
python
import cv2
import numpy as np # 用于帧的类型提示
from typing import Callable, Optional # 用于类型提示
def process_video_frames( video_file_path: str, frame_processor: Callable[[np.ndarray], np.ndarray], output_path=Optional[str] = None ) -> None:
cap = cv2.VideoCaputer(video_path)
if not cap.isOpened():
print("Can't open Video")
exit()
# [[OpenCV-获取视频属性]]
frame_width, frame_height, fps = get_video_properties(video_capture: cv2.VideoCapture)
video_writer = None
if output_path:
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 定义视频编码器
video_writer = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
if not video_writer.isOpened():
print("Init Video Writer Failed.Processed Video will not be saved")
video_writer = None
while True:
ret, frame = cap.read()
if not ret:
break
#
# 在这里对使用process函数对每一帧进行进行处理
processed_frame = frame_processor(current_frame)
# 如果输出视频写入器已成功初始化,则写入处理后的帧
if video_writer:
# 确保处理后的帧尺寸与原始视频一致,否则可能无法写入
if processed_frame.shape[:2] != (frame_height, frame_width):
print(f"警告: 处理后的帧尺寸 {processed_frame.shape[:2]} 与原始视频尺寸 "
f"{(frame_height, frame_width)} 不匹配。可能导致写入问题。")
video_writer.write(processed_frame)
cap.release()
if video_writer:
video_writer.release()
cv2.destroyAllWindows()