K近邻算法(knn)

核心概念

  1. 算法定义

每个样本由其最接近的K个邻近样本代表(K通常≤20)。

对新数据分类时,提取训练集中特征最相似的K个样本,统计其类别频率,将最高频类别作为预测结果。

  1. 算法步骤

① 计算新数据与所有训练样本的距离;

② 按距离递增排序;

③ 选取距离最小的K个点;

④ 统计K个点的类别频率;

⑤ 返回频率最高的类别作为预测分类。

距离度量方法

  1. 欧氏距离

多维空间中的绝对距离。

公式(n维):

d = \\sqrt{\\sum_{i=1}\^{n}(x_i - y_i)\^2}

  1. 曼哈顿距离

坐标轴上的绝对轴距总和。

公式(二维):

d = \|x_1 - x_2\| + \|y_1 - y_2\|

实战案例:鸢尾花分类(基于sklearn)

  1. 数据集

特征:花萼长度/宽度、花瓣长度/宽度(4个特征)。

标签:3种鸢尾花类别(`setosa`, `versicolor`, `virginica`)。

  1. 实现步骤

  2. 加载数据

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)

  1. 创建KNN模型(K=5,欧氏距离)

knn = KNeighborsClassifier(n_neighbors=5, metric="euclidean")

knn.fit(X_train, y_train)

  1. 评估与预测

train_score = knn.score(X_train, y_train) # 训练集准确率

test_score = knn.score(X_test, y_test) # 测试集准确率

y_pred = knn.predict(X_test) # 预测标签

```

相关推荐
飞哥数智坊26 分钟前
TRAE SOLO 正式版上线,限时免费活动开启
人工智能·trae·solo
Danceful_YJ30 分钟前
34.来自Transformers的双向编码器表示(BERT)
人工智能·深度学习·bert
love530love33 分钟前
【笔记】xFormers版本与PyTorch、CUDA对应关系及正确安装方法详解
人工智能·pytorch·windows·笔记·python·深度学习·xformers
中科岩创41 分钟前
某地公园桥梁自动化监测服务项目
大数据·人工智能·物联网·自动化
kev_gogo42 分钟前
【链式法则】神经网络中求导时w既是常数也是自变量的辨析(能否对常数求导?)
人工智能·深度学习·神经网络
文真同学1 小时前
《动手学深度学习》6.3~6.4
人工智能·深度学习
受之以蒙1 小时前
赋能 AI 与具身智能:Rust ndarray 构建安全高效的数据底座
人工智能·笔记·rust
Fuly10241 小时前
LangGraph基础教程(4)---LangGraph的核心能力
人工智能·langchain
一如年少模样丶2 小时前
AI 智能体的终极记忆方案?来认识一下 Graphiti
人工智能
机器学习之心2 小时前
NRBO-XGBoost+SHAP分析+新数据预测!机器学习可解释分析不在发愁!提供9种混沌映射方法(tent、chebyshev、singer等)
人工智能·机器学习·nrbo-xgboost