K近邻算法(knn)

核心概念

  1. 算法定义

每个样本由其最接近的K个邻近样本代表(K通常≤20)。

对新数据分类时,提取训练集中特征最相似的K个样本,统计其类别频率,将最高频类别作为预测结果。

  1. 算法步骤

① 计算新数据与所有训练样本的距离;

② 按距离递增排序;

③ 选取距离最小的K个点;

④ 统计K个点的类别频率;

⑤ 返回频率最高的类别作为预测分类。

距离度量方法

  1. 欧氏距离

多维空间中的绝对距离。

公式(n维):

d = \\sqrt{\\sum_{i=1}\^{n}(x_i - y_i)\^2}

  1. 曼哈顿距离

坐标轴上的绝对轴距总和。

公式(二维):

d = \|x_1 - x_2\| + \|y_1 - y_2\|

实战案例:鸢尾花分类(基于sklearn)

  1. 数据集

特征:花萼长度/宽度、花瓣长度/宽度(4个特征)。

标签:3种鸢尾花类别(`setosa`, `versicolor`, `virginica`)。

  1. 实现步骤

  2. 加载数据

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)

  1. 创建KNN模型(K=5,欧氏距离)

knn = KNeighborsClassifier(n_neighbors=5, metric="euclidean")

knn.fit(X_train, y_train)

  1. 评估与预测

train_score = knn.score(X_train, y_train) # 训练集准确率

test_score = knn.score(X_test, y_test) # 测试集准确率

y_pred = knn.predict(X_test) # 预测标签

```

相关推荐
buttonupAI18 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_9048764818 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
竣雄18 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把18 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL19 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很19 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里19 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL162386312919 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛1120 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature20 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能