K近邻算法(knn)

核心概念

  1. 算法定义

每个样本由其最接近的K个邻近样本代表(K通常≤20)。

对新数据分类时,提取训练集中特征最相似的K个样本,统计其类别频率,将最高频类别作为预测结果。

  1. 算法步骤

① 计算新数据与所有训练样本的距离;

② 按距离递增排序;

③ 选取距离最小的K个点;

④ 统计K个点的类别频率;

⑤ 返回频率最高的类别作为预测分类。

距离度量方法

  1. 欧氏距离

多维空间中的绝对距离。

公式(n维):

d = \\sqrt{\\sum_{i=1}\^{n}(x_i - y_i)\^2}

  1. 曼哈顿距离

坐标轴上的绝对轴距总和。

公式(二维):

d = \|x_1 - x_2\| + \|y_1 - y_2\|

实战案例:鸢尾花分类(基于sklearn)

  1. 数据集

特征:花萼长度/宽度、花瓣长度/宽度(4个特征)。

标签:3种鸢尾花类别(`setosa`, `versicolor`, `virginica`)。

  1. 实现步骤

  2. 加载数据

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)

  1. 创建KNN模型(K=5,欧氏距离)

knn = KNeighborsClassifier(n_neighbors=5, metric="euclidean")

knn.fit(X_train, y_train)

  1. 评估与预测

train_score = knn.score(X_train, y_train) # 训练集准确率

test_score = knn.score(X_test, y_test) # 测试集准确率

y_pred = knn.predict(X_test) # 预测标签

```

相关推荐
全年无休的IT老兵1 天前
使用AI工具一句话生成PPT
人工智能·powerpoint
初级炼丹师(爱说实话版)1 天前
2025算法八股——深度学习——优化器小结
人工智能·深度学习·算法
开开心心_Every1 天前
免费语音合成工具:66种音色随心选
人工智能·面试·java-ee·计算机外设·电脑·maven·excel
Pocker_Spades_A1 天前
论文精读(五):面向链接预测的知识图谱表示学习方法综述
人工智能·链表·知识图谱
AI算法工程师Moxi1 天前
人工智能在医学图像中的应用:从机器学习到深度学习
人工智能·深度学习·机器学习
Billy_Zuo1 天前
人工智能机器学习——聚类
人工智能·机器学习·聚类
大熊背1 天前
怎样利用AE统计数据优化安防芯片ISP的图像质量?
人工智能·自动曝光
百度智能云技术站1 天前
AI 云再进化,百度智能云新技术与产品全景解读
人工智能·百度
Christo31 天前
TFS-2023《Fuzzy Clustering With Knowledge Extraction and Granulation》
人工智能·算法·机器学习·支持向量机
Ai尚研修-贾莲1 天前
全链路自主构建智慧科研写作系统——融合LLM语义理解、多智能体任务协同与n8n自动化工作流构建
人工智能·agent·智能体·deepseek·n8n·智慧科研写作·llm语义理解