DeepSeek V3.1 发布:我们等的 R2 去哪了?

前言

最近大模型圈动态不断,各家接连发布新版本,行业节奏明显加快。

在这样的背景下,不少人都在等 DeepSeek 的下一代旗舰模型 R2------毕竟从年初传到年中,发布时间一再推迟,期待值也被拉得越来越高。

但等来的不是 R2,而是 DeepSeek-V3.1。

V3.1 都更新了什么?

我们先来看看升级内容:

  • 混合推理架构:支持在"快速响应"和"深度思考"两种模式间切换,一个模型兼顾效率与深度。
  • 更高的思考效率:相比之前的 R1 版本,新模型在保持推理质量的同时,响应速度有所提升。
  • 更强的 Agent 能力:通过后训练优化,在工具调用、任务规划等智能体场景中的表现更稳定。
  • 兼容 Anthropic API 格式:方便开发者将其集成进 Claude Code 等生态框架。
  • 9月6日后价格调整,取消夜间时段优惠

至于网上传的上下文升级到 128K,这个能力早在 V3 和 R1 的早期版本中就已经支持,并不是这次的新内容。

混合推理架构

其中,最大的升级就是"混合推理架构"。

给大家解释下。

  • V3 这类不能深度思考的叫做普通模型。
  • R1 这类只能深度思考的叫做推理模型。

而支持设置"是否深度思考"的模型就叫做"混合推理"模型,既能快速处理简单问答,也能应对需要多步推理的复杂任务。

也就是说,如果之后 V3.1 模型实际效果还可以,那以后的 DeepSeek 模型可能将不再区分 V 和 R 系列,而是只有一个统一的模型了。

但不管是提出混合推理的 Open AI, 还是国内首发混合推理的 Qwen3,后来都选择了非融合方案。

一点猜测

没有等到 DeepSeek R2,大家都有落差。

但看了很多资讯和文档后,我在想,会不会我们看到的 V3.1 就是我们设想的 R2,或者 V4?

只不过和我们设想不一样的是,深度求索团队当时选择了"混合推理"路线,原计划会把混合推理模型发布为 R2/V4,或者重开一个系列。

但,也许是能力没有达到预期,也许是 GPT-5 和 Qwen3 的选择给了一些提醒。最终,我们只看到了 V3.1。

其实,V3.1 这个命名也一定程度上印证着这次的不同寻常。

希望今年,我们可以看到一次大的版本更新!

加油,DeepSeek!

相关推荐
多恩Stone3 分钟前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
江瀚视野4 分钟前
多家银行向甲骨文断贷,巨头甲骨文这是怎么了?
大数据·人工智能
ccLianLian6 分钟前
计算机基础·cs336·损失函数,优化器,调度器,数据处理和模型加载保存
人工智能·深度学习·计算机视觉·transformer
asheuojj7 分钟前
2026年GEO优化获客效果评估指南:如何精准衡量TOP5关
大数据·人工智能·python
多恩Stone8 分钟前
【RoPE】Flux 中的 Image Tokenization
开发语言·人工智能·python
callJJ10 分钟前
Spring AI ImageModel 完全指南:用 OpenAI DALL-E 生成图像
大数据·人工智能·spring·openai·springai·图像模型
铁蛋AI编程实战11 分钟前
2026 大模型推理框架测评:vLLM 0.5/TGI 2.0/TensorRT-LLM 1.8/DeepSpeed-MII 0.9 性能与成本防线对比
人工智能·机器学习·vllm
23遇见13 分钟前
CANN ops-nn 仓库高效开发指南:从入门到精通
人工智能
SAP工博科技13 分钟前
SAP 公有云 ERP 多工厂多生产线数据统一管理技术实现解析
大数据·运维·人工智能
芷栀夏15 分钟前
CANN ops-math:异构计算场景下基础数学算子的深度优化与硬件亲和设计解析
人工智能·cann