imx6ull-驱动开发篇29——Linux阻塞IO 实验

目录

实验程序编写

blockio.c

blockioApp.c

[Makefile 文件](#Makefile 文件)

运行测试


在之前的文章里,Linux阻塞和非阻塞 IO(上),我们学习了Linux应用程序了两种操作方式:阻塞和非阻塞 IO。

在Linux 中断实验中,Linux 中断实验,我们直接在应用程序中通过 read 函数不断的读取按键状态,当按键有效的时候就打印出按键值。缺点就是:imx6uirqApp 这个测试应用程序拥有很高的 CPU 占用率。

本节实验,我们使用阻塞 IO 的方式,实现同样的功能,但大大降低CPU的占用率。

实验程序编写

在中断实验代码的基础上修改,主要是对其添加阻塞访问相关的代码。

blockio.c

代码如下:

cpp 复制代码
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/of_irq.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define IMX6UIRQ_CNT		1			/* 设备号个数 	*/
#define IMX6UIRQ_NAME		"blockio"	/* 名字 		*/
#define KEY0VALUE			0X01		/* KEY0按键值 	*/
#define INVAKEY				0XFF		/* 无效的按键值 */
#define KEY_NUM				1			/* 按键数量 	*/

/* 中断IO描述结构体 */
struct irq_keydesc {
	int gpio;								/* gpio */
	int irqnum;								/* 中断号     */
	unsigned char value;					/* 按键对应的键值 */
	char name[10];							/* 名字 */
	irqreturn_t (*handler)(int, void *);	/* 中断服务函数 */
};

/* imx6uirq设备结构体 */
struct imx6uirq_dev{
	dev_t devid;			/* 设备号 	 */	
	struct cdev cdev;		/* cdev 	*/                 
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
	struct device_node	*nd; /* 设备节点 */	
	atomic_t keyvalue;		/* 有效的按键键值 */
	atomic_t releasekey;	/* 标记是否完成一次完成的按键,包括按下和释放 */
	struct timer_list timer;/* 定义一个定时器*/
	struct irq_keydesc irqkeydesc[KEY_NUM];	/* 按键init述数组 */
	unsigned char curkeynum;				/* 当前init按键号 */

	wait_queue_head_t r_wait;	/* 读等待队列头 */
};

struct imx6uirq_dev imx6uirq;	/* irq设备 */

/* @description		: 中断服务函数,开启定时器		
 *				  	  定时器用于按键消抖。
 * @param - irq 	: 中断号 
 * @param - dev_id	: 设备结构。
 * @return 			: 中断执行结果
 */
static irqreturn_t key0_handler(int irq, void *dev_id)
{
	struct imx6uirq_dev *dev = (struct imx6uirq_dev*)dev_id;

	dev->curkeynum = 0;
	dev->timer.data = (volatile long)dev_id;
	mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10));	/* 10ms定时 */
	return IRQ_RETVAL(IRQ_HANDLED);
}

/* @description	: 定时器服务函数,用于按键消抖,定时器到了以后
 *				  再次读取按键值,如果按键还是处于按下状态就表示按键有效。
 * @param - arg	: 设备结构变量
 * @return 		: 无
 */
void timer_function(unsigned long arg)
{
	unsigned char value;
	unsigned char num;
	struct irq_keydesc *keydesc;
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg;

	num = dev->curkeynum;
	keydesc = &dev->irqkeydesc[num];

	value = gpio_get_value(keydesc->gpio); 	/* 读取IO值 */
	if(value == 0){ 						/* 按下按键 */
		atomic_set(&dev->keyvalue, keydesc->value);
	}
	else{ 									/* 按键松开 */
		atomic_set(&dev->keyvalue, 0x80 | keydesc->value);
		atomic_set(&dev->releasekey, 1);	/* 标记松开按键,即完成一次完整的按键过程 */
	}               

	/* 唤醒进程 */
	if(atomic_read(&dev->releasekey)) {	/* 完成一次按键过程 */
		/* wake_up(&dev->r_wait); */
		wake_up_interruptible(&dev->r_wait);
	}
}

/*
 * @description	: 按键IO初始化
 * @param 		: 无
 * @return 		: 无
 */
static int keyio_init(void)
{
	unsigned char i = 0;
	char name[10];
	int ret = 0;
	
	imx6uirq.nd = of_find_node_by_path("/key");
	if (imx6uirq.nd== NULL){
		printk("key node not find!\r\n");
		return -EINVAL;
	} 

	/* 提取GPIO */
	for (i = 0; i < KEY_NUM; i++) {
		imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i);
		if (imx6uirq.irqkeydesc[i].gpio < 0) {
			printk("can't get key%d\r\n", i);
		}
	}
	
	/* 初始化key所使用的IO,并且设置成中断模式 */
	for (i = 0; i < KEY_NUM; i++) {
		memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(name));	/* 缓冲区清零 */
		sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i);		/* 组合名字 */
		gpio_request(imx6uirq.irqkeydesc[i].gpio, name);
		gpio_direction_input(imx6uirq.irqkeydesc[i].gpio);	
		imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i);
#if 0
		imx6uirq.irqkeydesc[i].irqnum = gpio_to_irq(imx6uirq.irqkeydesc[i].gpio);
#endif
	}

	/* 申请中断 */
	imx6uirq.irqkeydesc[0].handler = key0_handler;
	imx6uirq.irqkeydesc[0].value = KEY0VALUE;
	
	for (i = 0; i < KEY_NUM; i++) {
		ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler, 
		                 IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq);
		if(ret < 0){
			printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum);
			return -EFAULT;
		}
	}

	/* 创建定时器 */
     init_timer(&imx6uirq.timer);
     imx6uirq.timer.function = timer_function;

	/* 初始化等待队列头 */
	init_waitqueue_head(&imx6uirq.r_wait);
	return 0;
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int imx6uirq_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &imx6uirq;	/* 设置私有数据 */
	return 0;
}

 /*
  * @description     : 从设备读取数据 
  * @param - filp    : 要打开的设备文件(文件描述符)
  * @param - buf     : 返回给用户空间的数据缓冲区
  * @param - cnt     : 要读取的数据长度
  * @param - offt    : 相对于文件首地址的偏移
  * @return          : 读取的字节数,如果为负值,表示读取失败
  */
static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	int ret = 0;
	unsigned char keyvalue = 0;
	unsigned char releasekey = 0;
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;

#if 0
	/* 加入等待队列,等待被唤醒,也就是有按键按下 */
 	ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey)); 
	if (ret) {
		goto wait_error;
	} 
#endif

	DECLARE_WAITQUEUE(wait, current);	/* 定义一个等待队列 */
	if(atomic_read(&dev->releasekey) == 0) {	/* 没有按键按下 */
		add_wait_queue(&dev->r_wait, &wait);	/* 将等待队列添加到等待队列头 */
		__set_current_state(TASK_INTERRUPTIBLE);/* 设置任务状态 */
		schedule();							/* 进行一次任务切换 */
		if(signal_pending(current))	{			/* 判断是否为信号引起的唤醒 */
			ret = -ERESTARTSYS;
			goto wait_error;
		}
		__set_current_state(TASK_RUNNING);      /* 将当前任务设置为运行状态 */
	    remove_wait_queue(&dev->r_wait, &wait);    /* 将对应的队列项从等待队列头删除 */
	}

	keyvalue = atomic_read(&dev->keyvalue);
	releasekey = atomic_read(&dev->releasekey);

	if (releasekey) { /* 有按键按下 */	
		if (keyvalue & 0x80) {
			keyvalue &= ~0x80;
			ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue));
		} else {
			goto data_error;
		}
		atomic_set(&dev->releasekey, 0);/* 按下标志清零 */
	} else {
		goto data_error;
	}
	return 0;

wait_error:
	set_current_state(TASK_RUNNING);		/* 设置任务为运行态 */
	remove_wait_queue(&dev->r_wait, &wait);	/* 将等待队列移除 */
	return ret;

data_error:
	return -EINVAL;
}

/* 设备操作函数 */
static struct file_operations imx6uirq_fops = {
	.owner = THIS_MODULE,
	.open = imx6uirq_open,
	.read = imx6uirq_read,
};

/*
 * @description	: 驱动入口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init imx6uirq_init(void)
{
	/* 1、构建设备号 */
	if (imx6uirq.major) {
		imx6uirq.devid = MKDEV(imx6uirq.major, 0);
		register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
	} else {
		alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
		imx6uirq.major = MAJOR(imx6uirq.devid);
		imx6uirq.minor = MINOR(imx6uirq.devid);
	}

	/* 2、注册字符设备 */
	cdev_init(&imx6uirq.cdev, &imx6uirq_fops);
	cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT);

	/* 3、创建类 */
	imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME);
	if (IS_ERR(imx6uirq.class)) {	
		return PTR_ERR(imx6uirq.class);
	}

	/* 4、创建设备 */
	imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME);
	if (IS_ERR(imx6uirq.device)) {
		return PTR_ERR(imx6uirq.device);
	}
		
	/* 5、始化按键 */
	atomic_set(&imx6uirq.keyvalue, INVAKEY);
	atomic_set(&imx6uirq.releasekey, 0);
	keyio_init();
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit imx6uirq_exit(void)
{
	unsigned i = 0;
	/* 删除定时器 */
	del_timer_sync(&imx6uirq.timer);	/* 删除定时器 */
		
	/* 释放中断 */	
	for (i = 0; i < KEY_NUM; i++) {
		free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq);
		gpio_free(imx6uirq.irqkeydesc[i].gpio);
	}
	cdev_del(&imx6uirq.cdev);
	unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT);
	device_destroy(imx6uirq.class, imx6uirq.devid);
	class_destroy(imx6uirq.class);
}
	
module_init(imx6uirq_init);
module_exit(imx6uirq_exit);
MODULE_LICENSE("GPL");

关键代码分析如下:

设备文件名字为"blockio",当驱动程序加载成功以后就会在根文件系统中出现一个名为"/dev/blockio"的文件。

cpp 复制代码
#define IMX6UIRQ_NAME "blockio" /* 名字 */

imx6uirq 设备结构体中,添加一个等待队列头 r_wait,因为在 Linux 驱动中处理阻塞 IO需要用到等待队列。

cpp 复制代码
wait_queue_head_t r_wait; /* 读等待队列头 */

timer_function函数里,定时器中断处理函数执行,表示有按键按下,先判断一下是否是一次有效的按键,如果是的话就通过 wake_up 或者 wake_up_interruptible 函数来唤醒等待队列r_wait。

cpp 复制代码
	/* 唤醒进程 */
	if(atomic_read(&dev->releasekey)) {	/* 完成一次按键过程 */
		/* wake_up(&dev->r_wait); */
		wake_up_interruptible(&dev->r_wait);
	}

keyio_init函数,调用 init_waitqueue_head 函数初始化等待队列头 r_wait。

cpp 复制代码
/* 初始化等待队列头 */
  init_waitqueue_head(&imx6uirq.r_wait);

imx6uirq_read函数,采用等待事件来处理 read 的阻塞访问, wait_event_interruptible 函数等待releasekey 有效,也就是有按键按下。

如果按键没有按下的话进程就会进入休眠状态,因为采用了 wait_event_interruptible 函数,因此进入休眠态的进程可以被信号打断。

cpp 复制代码
#if 0
	/* 加入等待队列,等待被唤醒,也就是有按键按下 */
 	ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey)); 
	if (ret) {
		goto wait_error;
	} 
#endif

imx6uirq_read函数,使用等待队列实现阻塞访问的关键代码:

  • 首先使用 DECLARE_WAITQUEUE宏定义一个等待队列,
  • 如果没有按键按下的话,就使用 add_wait_queue 函数将当前任务的等待队列,添加到等待队列头 r_wait 中。
  • 随后调用**__set_current_state**函数,设置当前进程的状态为 TASK_INTERRUPTIBLE,也就是可以被信号打断。
  • 接下来调用schedule函数进行一次任务切换,当前进程就会进入到休眠态。如果有按键按下,那么进入休眠态的进程就会唤醒,然后接着从休眠点开始运行。
  • 通过 signal_pending 函数,判断一下进程是不是由信号唤醒的,如果是由信号唤醒的话就直接返回-ERESTARTSYS 这个错误码。
  • 如果不是由信号唤醒的(也就是被按键唤醒的),那么就调用**__set_current_state** 函数将任务状态设置为 TASK_RUNNING,然后调用 remove_wait_queue函数将进程从等待队列中删除。
cpp 复制代码
	DECLARE_WAITQUEUE(wait, current);	/* 定义一个等待队列 */
	if(atomic_read(&dev->releasekey) == 0) {	/* 没有按键按下 */
		add_wait_queue(&dev->r_wait, &wait);	/* 将等待队列添加到等待队列头 */
		__set_current_state(TASK_INTERRUPTIBLE);/* 设置任务状态 */
		schedule();							/* 进行一次任务切换 */
		if(signal_pending(current))	{			/* 判断是否为信号引起的唤醒 */
			ret = -ERESTARTSYS;
			goto wait_error;
		}
		__set_current_state(TASK_RUNNING);      /* 将当前任务设置为运行状态 */
	    remove_wait_queue(&dev->r_wait, &wait);    /* 将对应的队列项从等待队列头删除 */
	}

总结一下,使用等待队列实现阻塞访问的步骤:

  • 将任务或者进程加入到等待队列头,
  • 在合适的点唤醒等待队列,一般都是中断处理函数里面。

blockioApp.c

测试app的代码和中断实验的代码一致,代码如下:

cpp 复制代码
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include "linux/ioctl.h"
 
/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int fd;
	int ret = 0;
	char *filename;
	unsigned char data;
	
	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}
 
	filename = argv[1];
	fd = open(filename, O_RDWR);
	if (fd < 0) {
		printf("Can't open file %s\r\n", filename);
		return -1;
	}
 
	while (1) {
		ret = read(fd, &data, sizeof(data));
		if (ret < 0) {  /* 数据读取错误或者无效 */
			
		} else {		/* 数据读取正确 */
			if (data)	/* 读取到数据 */
				printf("key value = %#X\r\n", data);
		}
	}
	close(fd);
	return ret;
}

Makefile 文件

makefile文件只需要修改 obj-m 变量的值,改为blockio.o。

内容如下:

cpp 复制代码
KERNELDIR := /home/huax/linux/linux_test/linux-imx-rel_imx_4.1.15_2.1.0_ga
 
CURRENT_PATH := $(shell pwd)
obj-m := blockio.o
 
build: kernel_modules
kernel_modules:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

运行测试

编译代码:

cpp 复制代码
make -j32 //编译makefile文件
cpp 复制代码
arm-linux-gnueabihf-gcc blockioApp.c -o blockioApp   //编译测试app

编译成功以后,就会生成一个名为"blockio.ko"的驱动模块文件,和blcokioApp 这个应用程序。

将编译出来 blockio.ko 和 blockioApp 这两个文件拷贝到 rootfs/lib/modules/4.1.15目录中,重启开发板。

进入到目录 lib/modules/4.1.15 中,输入如下命令加载 blockio.ko 驱动模块:

bash 复制代码
depmod //第一次加载驱动的时候需要运行此命令
modprobe blockio.ko //加载驱动

加载成功以后,使用如下命令打开 blockioApp 这个测试 APP,并且以后台模式运行:

bash 复制代码
./blockioApp /dev/blockio &

按下正点原子开发板上的 KEY0 按键,结果如图:

当按下 KEY0 按键以后 blockioApp 这个测试 APP 就会打印出按键值。

输入"top"命令,查看 blockioAPP 这个应用 APP 的 CPU 使用率,如图:

可以看出,当我们在按键驱动程序里面加入阻塞访问以后, blockioApp 这个应用程序的 CPU 使用率从 99.6%降低到了 0.0%。

我们可以使用"kill"命令关闭后台运行的应用程序,比如我们关闭掉 blockioApp 这个后台运行的应用程序。先查看 blockioApp 这个应用程序的 PID:

使用如下命令可"杀死"指定 PID 的进程:

cpp 复制代码
kill -9 149

"./blockioApp /dev/blockio"这个应用程序已经被"杀掉"了。

再输入"ps"命令查看当前系统运行的进程,会发现 blockioApp 已经不见了。