中介者模式 (Mediator Pattern) 深度解析
一、模式定义与核心思想
- 定义:
中介者模式是一种行为设计模式,它用一个中介对象来封装一系列对象之间的交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
- 核心思想:
解耦:将原本对象之间复杂的、网状的多对多关系,转变为相对简单的、星形的一对多关系。中介者充当了"交通指挥中心"或"聊天室服务器"的角色。
集中控制:将分散在各个对象中的交互逻辑(通信协议、协调规则)集中到中介者中。这使得这些交互规则更容易理解和修改。
职责分离:各个同事对象(Colleague)只需负责自己的内部状态和行为,它们如何影响其他对象的工作,完全交给了中介者。
二、模式结构(UML 与角色分析)
中介者模式主要包含四个角色:
Mediator (中介者接口):定义了与各同事对象进行通信的接口,通常是一个抽象类或接口,声明了诸如 Notify 的方法。
ConcreteMediator (具体中介者):实现了中介者接口。它知晓所有具体的同事对象,并负责协调各个同事对象之间的交互。它包含了复杂的控制逻辑。
Colleague (同事类接口/基类):定义了同事对象的接口。它通常持有一个指向中介者对象的引用,用于通过中介者与其他同事通信。这个引用通常在构造函数中注入。
ConcreteColleague (具体同事类):实现了同事类接口。每个具体同事对象只知道中介者,而不知道其他同事对象。当需要与其他同事通信时,它会通知中介者。
三、C++ 实现与经典实例
中介者模式的核心在于一个知晓所有同事对象的具体中介者类,它包含了整个系统的交互逻辑。
实例1:聊天室(最经典的例子)
这是一个完美体现中介者模式的场景。多个用户(同事)不需要知道彼此的存在,他们只和聊天室(中介者)打交道。
UML 角色分析:
-
Mediator :
ChatRoomMediator
接口(或抽象类),声明sendMessage
方法。 -
ConcreteMediator :
ChatRoom
类,实现sendMessage
,知道所有用户,负责消息的广播。 -
Colleague :
User
基类,持有中介者的引用。 -
ConcreteColleague :
ChatUser
类,实现发送和接收消息的方法。
C++ 代码实现:
cpp
#include <iostream>
#include <string>
#include <vector>
#include <memory>
// 1. 前向声明
class User;
// 2. Mediator (中介者接口)
class ChatRoomMediator {
public:
virtual void sendMessage(const std::string& message, const User* user) = 0;
virtual ~ChatRoomMediator() = default;
};
// 3. Colleague (同事基类)
class User {
protected:
ChatRoomMediator* m_mediator;
std::string m_name;
public:
User(const std::string& name, ChatRoomMediator* mediator)
: m_name(name), m_mediator(mediator) {}
virtual void send(const std::string& message) = 0;
virtual void receive(const std::string& message, const std::string& senderName) = 0;
const std::string& getName() const { return m_name; }
virtual ~User() = default;
};
// 4. ConcreteMediator (具体中介者)
class ChatRoom : public ChatRoomMediator {
private:
std::vector<User*> m_users; // 中介者知晓所有同事
public:
void addUser(User* user) {
m_users.push_back(user);
}
void sendMessage(const std::string& message, const User* user) override {
// 中介者的核心逻辑:将消息发送给除发送者之外的所有人
for (User* u : m_users) {
// 不将消息发回给自己
if (u != user) {
u->receive(message, user->getName());
}
}
// 也可以在这里添加其他逻辑,如记录日志、过滤敏感词等
std::cout << "[ChatRoom Log]: " << user->getName() << " sent a message." << std::endl;
}
};
// 5. ConcreteColleague (具体同事类)
class ChatUser : public User {
public:
ChatUser(const std::string& name, ChatRoomMediator* mediator)
: User(name, mediator) {}
void send(const std::string& message) override {
std::cout << m_name << " sends: " << message << std::endl;
// 关键:同事对象不直接联系其他对象,而是通知中介者
m_mediator->sendMessage(message, this);
}
void receive(const std::string& message, const std::string& senderName) override {
std::cout << m_name << " received from " << senderName << ": " << message << std::endl;
}
};
// 客户端代码
int main() {
// 创建中介者
ChatRoom chatroom;
// 创建同事对象,并将中介者注入给他们
ChatUser alice("Alice", &chatroom);
ChatUser bob("Bob", &chatroom);
ChatUser charlie("Charlie", &chatroom);
// 将用户注册到中介者(让中介者知道所有同事)
chatroom.addUser(&alice);
chatroom.addUser(&bob);
chatroom.addUser(&charlie);
// 用户通过中介者发送消息,而不是直接相互调用
std::cout << "--- Chat Session ---" << std::endl;
alice.send("Hi everyone!");
bob.send("Hey Alice!");
charlie.send("What's up?");
return 0;
}
输出:
cpp
--- Chat Session ---
Alice sends: Hi everyone!
Bob received from Alice: Hi everyone!
Charlie received from Alice: Hi everyone!
[ChatRoom Log]: Alice sent a message.
Bob sends: Hey Alice!
Alice received from Bob: Hey Alice!
Charlie received from Bob: Hey Alice!
[ChatRoom Log]: Bob sent a message.
Charlie sends: What's up?
Alice received from Charlie: What's up?
Bob received from Charlie: What's up?
[ChatRoom Log]: Charlie sent a message.
模式优势体现:
松耦合:ChatUser 类不知道其他 ChatUser 的存在,它只依赖于 ChatRoomMediator 接口。
易于扩展:要添加新用户,只需创建新的 ChatUser 实例并注册到聊天室即可,无需修改任何现有类。
集中控制:所有消息分发的逻辑(如不发给发送者自己、记录日志)都集中在 ChatRoom::sendMessage 方法中,修改起来非常方便。
实例2:飞机与塔台调度系统
这是一个更复杂、更贴近实际应用的例子,展示了中介者如何管理复杂的交互规则。
场景描述:
多架飞机(同事)需要请求起飞、降落、报告位置。它们不能直接沟通,必须通过塔台(中介者)。塔台知晓所有飞机的状态和机场跑道信息,并根据一套复杂的规则(如跑道是否空闲、优先级)来协调指令。
C++ 代码实现(简化版):
cpp
#include <iostream>
#include <string>
#include <map>
#include <memory>
// Forward Declarations
class Aircraft;
// Mediator
class ControlTower {
private:
bool m_runwayAvailable;
std::map<std::string, Aircraft*> m_aircrafts; // 所有注册的飞机
public:
ControlTower() : m_runwayAvailable(true) {}
void registerAircraft(const std::string& callSign, Aircraft* aircraft) {
m_aircrafts[callSign] = aircraft;
}
// 中介者的核心协调逻辑
void requestLanding(const std::string& aircraftCallSign);
void notifyLandingComplete(const std::string& aircraftCallSign);
};
// Colleague
class Aircraft {
protected:
ControlTower* m_tower;
std::string m_callSign;
public:
Aircraft(const std::string& callSign, ControlTower* tower)
: m_callSign(callSign), m_tower(tower) {}
virtual void requestLanding() {
std::cout << m_callSign << " requesting to land." << std::endl;
m_tower->requestLanding(m_callSign);
}
virtual void receiveLandingClearance() {
std::cout << m_callSign << " has received landing clearance. Beginning descent." << std::endl;
}
virtual void completeLanding() {
std::cout << m_callSign << " has landed successfully." << std::endl;
m_tower->notifyLandingComplete(m_callSign);
}
virtual ~Aircraft() = default;
};
// Concrete Colleague
class PassengerAircraft : public Aircraft {
public:
PassengerAircraft(const std::string& callSign, ControlTower* tower)
: Aircraft(callSign, tower) {}
};
// 在类外实现中介者的方法,以避免循环依赖
void ControlTower::requestLanding(const std::string& aircraftCallSign) {
if (m_runwayAvailable) {
std::cout << "Control Tower: Runway is free. " << aircraftCallSign << " cleared to land." << std::endl;
m_runwayAvailable = false;
if (m_aircrafts.find(aircraftCallSign) != m_aircrafts.end()) {
m_aircrafts[aircraftCallSign]->receiveLandingClearance();
}
} else {
std::cout << "Control Tower: Runway busy. " << aircraftCallSign << " please hold." << std::endl;
// 在实际系统中,这里会将请求加入队列
}
}
void ControlTower::notifyLandingComplete(const std::string& aircraftCallSign) {
std::cout << "Control Tower: " << aircraftCallSign << " has vacated the runway." << std::endl;
m_runwayAvailable = true;
// 检查队列,批准下一架飞机的请求
std::cout << "Control Tower: Runway is now available for next aircraft." << std::endl;
}
// Client Code
int main() {
ControlTower jfkTower;
PassengerAircraft ua101("UA101", &jfkTower);
PassengerAircraft ba202("BA202", &jfkTower);
PassengerAircraft lh303("LH303", &jfkTower);
jfkTower.registerAircraft("UA101", &ua101);
jfkTower.registerAircraft("BA202", &ba202);
jfkTower.registerAircraft("LH303", &lh303);
std::cout << "--- Landing Sequence ---" << std::endl;
// 飞机只与塔台通信
ua101.requestLanding();
ba202.requestLanding(); // 这架会被要求等待
std::cout << "\n...UA101 is landing...\n" << std::endl;
ua101.completeLanding(); // UA101降落完成,释放跑道
std::cout << "\nBA202 can now try again..." << std::endl;
ba202.requestLanding(); // BA202再次请求,此时跑道空闲
return 0;
}
输出:
cpp
--- Landing Sequence ---
UA101 requesting to land.
Control Tower: Runway is free. UA101 cleared to land.
UA101 has received landing clearance. Beginning descent.
BA202 requesting to land.
Control Tower: Runway busy. BA202 please hold.
...UA101 is landing...
UA101 has landed successfully.
Control Tower: UA101 has vacated the runway.
Control Tower: Runway is now available for next aircraft.
BA202 can now try again...
BA202 requesting to land.
Control Tower: Runway is free. BA202 cleared to land.
BA202 has received landing clearance. Beginning descent.