无监督学习中的经典聚类算法——K-Means笔记

一、无监督学习中的经典聚类算法------K-Means

  • 目的:在没有标签的情况下,把"相似样本"自动分到同一组,用于数据探索、分群、压缩、异常检测等场景

二、核心概念

  1. 聚类(Clustering)

    -- 无监督:没有 y 标签

    -- 目标:高内聚、低耦合

  2. 难点

    -- 如何评估好坏?

    -- 如何选取参数(主要是 K)?

三、距离度量(先选"像不像"的尺子)

  • 欧式距离(L2):多维直线距离,最常用

  • 曼哈顿距离(L1):坐标轴绝对轴距之和,适合高维稀疏

四、K-Means 算法流程("三步走")

  1. 随机选 K 个初始中心

  2. 分配:每个样本→距其最近的中心所属簇

  3. 更新:重新计算各簇中心(均值)

    循环 2-3 步直到中心不再移动或达到 max_iter

五、评估指标

  • SSE(类内平方和):越小越紧凑

  • CH 指数:同时衡量类内紧密度与类间分离度,越大越好

  • 轮廓系数(Silhouette):[-1,1],>0.5 通常可接受

六、优缺点速记

优点:

✓ 原理简单、实现容易、速度快、可并行

缺点:

✗ K 值需事先给定

✗ 对初值敏感(随机初始中心)

✗ 只能发现"球形"簇,对任意形状、密度差异大数据表现差

✗ 对异常值/噪声敏感

七、关键超参数

  • n_clusters(K):簇的数量

  • max_iter:最大迭代次数

  • n_init:随机运行次数,取最好结果

  • random_state:随机种子,复现实验

相关推荐
秦奈5 分钟前
Unity复习学习笔记(七):NGUI
笔记·学习·unity
晨欣8 分钟前
[eBPF硬核] Gemini阿吉学习笔记:Tetragon企业版两类核心日志 & 冷热数据分流架构设计 & 学习资源推荐
笔记·学习·云原生·云安全·ebpf·谷歌gemini
草莓熊Lotso11 分钟前
Python 流程控制完全指南:条件语句 + 循环语句 + 实战案例(零基础入门)
android·开发语言·人工智能·经验分享·笔记·后端·python
zore_c13 分钟前
【数据结构】队列——超详解!!!(包含队列的实现)
c语言·网络·数据结构·c++·笔记·算法·链表
Vizio<22 分钟前
STM32HAL库开发笔记-系统定时器与中断闪灯
笔记·stm32·单片机
لا معنى له5 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
flying robot9 小时前
centos7系统配置
笔记
zhdy5678911 小时前
最简单方法 设置matlab坐标轴刻度标签的字号,设置坐标轴标题和图形标题,并指定字号。画出的图片背景设置为白色,
笔记
崇山峻岭之间12 小时前
Matlab学习笔记02
笔记·学习·matlab
木木em哈哈12 小时前
C语言多线程
笔记