pandas

  1. pandas 是 Python 中一个非常流行和强大的数据分析库。它提供了高效的操作数据表和时间序列功能,广泛用于数据清洗、数据分析和数据可视化

    pip install pandas

javascript 复制代码
 import pandas as pd
  1. 常用数据结构 pandas 主要提供两个数据结构:

Series: 一维数组,带有标签(索引)。 DataFrame: 二维数据结构,类似于电子表格,由多行和多列组成。

  1. 创建 DataFrame 和 Series
  • 创建 Series
ini 复制代码
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)
  • 创建 DataFrame
bash 复制代码
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'San Francisco', 'Los Angeles']
}
df = pd.DataFrame(data)
print(df)
  1. 基本操作
ini 复制代码
df = pd.read_csv('data.csv')  # 从 CSV 文件读取数据
bash 复制代码
print(df.head())  # 查看前几行
print(df.info())  # 查看数据概况
print(df.describe())  # 查看描述性统计
ini 复制代码
选择列
ages = df['Age']
选择行
first_row = df.iloc[0] # 通过位置选择
bob_row = df[df['Name'] == 'Bob'] # 通过条件选择
ini 复制代码
处理缺失值
df.dropna(inplace=True) # 删除含有缺失值的行
df.fillna(0, inplace=True) # 用0填充缺失值
重命名列
df.rename(columns={'Name': 'Full Name'}, inplace=True)
  1. 数据分析
ini 复制代码
mean_age = df['Age'].mean()  # 计算平均年龄
age_counts = df['Age'].value_counts()  # 统计每个年龄的数量
ini 复制代码
grouped = df.groupby('City').mean()  # 按城市分组并计算每组的平均值print(grouped)
  1. 数据可视化:

虽然 pandas 主要是一个数据分析工具,但它可以与 matplotlibseaborn 等可视化库集成以进行数据可视化。

scss 复制代码
import matplotlib.pyplot as plt
绘制年龄分布图
df['Age'].hist()
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
  1. 示例代码:下面是一个简单的示例,将上述部分拼凑在一起,展示如何操作 pandas
python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
创建 DataFrame
data = {
 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
 'Age': [25, 30, 35, 40, None],
 'City': ['New York', 'San Francisco', 'Los Angeles', 'New York', 'San Francisco']
}
df = pd.DataFrame(data)
处理缺失值
df['Age'].fillna(df['Age'].mean(), inplace=True)
统计分析
print(df.describe())
分组并求平均
grouped = df.groupby('City')['Age'].mean().reset_index()
print(grouped)
可视化
grouped.plot(x='City', y='Age', kind='bar')
plt.title('Average Age by City')
plt.xlabel('City')
plt.ylabel('Average Age')
plt.show()
相关推荐
其美杰布-富贵-李22 分钟前
PyTorch Lightning
人工智能·pytorch·python·training
开开心心_Every23 分钟前
安卓做菜APP:家常菜谱详细步骤无广简洁
服务器·前端·python·学习·edge·django·powerpoint
SiYuanFeng24 分钟前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python
MistaCloud24 分钟前
Pytorch深入浅出(十四)之完整的模型训练测试套路
人工智能·pytorch·python·深度学习
知乎的哥廷根数学学派25 分钟前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
雪域迷影37 分钟前
Python中连接Redis数据库并存储数据
redis·python
vyuvyucd40 分钟前
Python虚拟环境终极指南:venv到uv进阶
开发语言·python·uv
老兵发新帖41 分钟前
基于Label Studio的视频标注与YOLO模型训练全流程指南
python·yolo·音视频
进阶的鱼1 小时前
一文助你了解Langchain
python·langchain·agent
收菜福星1 小时前
智能体来了:从 Python 开发者视角深度剖析与实践
python