使用 PIL 实现图片的批量格式转换

【Python 实战】---- 使用 PIL 实现图片的批量格式转换

1. 前言

在日常开发和图像处理工作中,我们经常需要将图片从一种格式转换为另一种格式。本文将基于一个实际的Python脚本示例,介绍如何实现批量图片格式转换,并对比几种常用的图像处理库的优劣势。

2. 技术对比分析

2.1 OpenCV

优势

  1. 功能强大,支持多种图像处理操作;
  2. 性能优秀,特别是在处理大量图像时;
  3. 支持多种图像格式。

劣势:学习曲线较陡峭;对于简单的格式转换任务可能过于复杂;主要专注于计算机视觉任务。

2.2 Wand

优势

  1. 功能非常全面,支持超过100种图像格式;
  2. 提供丰富的图像处理功能;
  3. 支持命令行工具的所有功能。

劣势:相对于PIL,社区支持较小;安装可能比较复杂。

2.3 pillow

优势

  1. 简单易用,API直观;
  2. 文档完善,社区支持良好;
  3. 轻量级,适合简单的图像处理任务;
  4. 广泛应用于Python图像处理领域。

劣势:在处理大量图像时性能不如OpenCV;功能相对有限,主要专注于基本的图像处理。

3. 实现分析

  1. 导入必要的库 :使用PIL库处理图像,os库处理文件和文件夹操作。
  2. 创建输出文件夹 :使用os.makedirs(output_folder, exist_ok=True)确保输出文件夹存在。
  3. 遍历输入文件夹 :使用os.listdir()获取输入文件夹中的所有文件。
  4. 筛选WebP文件 :通过filename.lower().endswith('.webp')筛选出WebP格式的文件。
  5. 图像转换 :使用Image.open()打开WebP图片,然后通过img.save()保存为PNG格式。
  6. 异常处理:在转换过程中加入异常处理,确保单个文件转换失败不会影响其他文件的转换。

4. 实现代码

python 复制代码
from PIL import Image
import os

def convert_webp_to_png(input_folder, output_folder):
    # 创建输出文件夹(如果不存在)
    os.makedirs(output_folder, exist_ok=True)
    
    # 遍历输入文件夹中的所有webp文件
    for filename in os.listdir(input_folder):
        if filename.lower().endswith('.webp'):
            # 构建完整的文件路径
            input_path = os.path.join(input_folder, filename)
            
            # 打开webp图片
            try:
                with Image.open(input_path) as img:
                    # 生成输出文件名(将.webp替换为.png)
                    output_filename = os.path.splitext(filename)[0] + '.png'
                    output_path = os.path.join(output_folder, output_filename)
                    
                    # 转换并保存为png格式
                    img.save(output_path, 'PNG')
                    print(f"已转换: {filename} -> {output_filename}")
            except Exception as e:
                print(f"转换失败 {filename}: {str(e)}")

if __name__ == "__main__":
    input_folder = "webp"
    output_folder = "out_webp"
    convert_webp_to_png(input_folder, output_folder)
    print("所有webp图片已转换完成!")

5. 执行结果

6. 执行前后对比

7. 总结

  1. 通过使用PIL库,我们可以轻松地实现WebP到PNG的格式转换。
  2. 对比了OpenCV、Wand和PIL三种常用的图像处理库,每种库都有其适用的场景。 在选择图像处理库时,应根据具体需求和项目特点来决定。
相关推荐
叶凡要飞8 分钟前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
yuluo_YX16 分钟前
VSR 项目解析
人工智能·python
计算衎1 小时前
python通过win32com库调用UDE工具来做开发调试实现自动化源码,以及UDE的知识点介绍
python·c/c++·pywin32·ude·com api
Full Stack Developme1 小时前
java.nio 包详解
java·python·nio
新手村领路人2 小时前
opencv gpu cuda python c++版本测试代码
python·opencv·cuda
高洁012 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
white-persist2 小时前
CSRF 漏洞全解析:从原理到实战
网络·python·安全·web安全·网络安全·系统安全·csrf
Bellafu6663 小时前
本地搭建EXAM-MASTER考试系统
python
开心-开心急了3 小时前
Flask入门教程——李辉 第三章 关键知识梳理
后端·python·flask
rannn_1114 小时前
【学以致用|python自动化办公】OCR批量识别自动存为Excel(批量识别发票)
python·ocr·excel·财务