
Docling 简化了文档处理,解析各种格式(包括高级 PDF 理解),并提供与 gen AI 生态系统的无缝集成。
特征
- 解析多种文档格式 ,包括 PDF、DOCX、PPTX、XLSX、HTML、WAV、MP3、图像(PNG、TIFF、JPEG 等)等;
- 高级 PDF 理解,包括页面布局、阅读顺序、表格结构、代码、公式、图像分类等;
- 统一、富有表现力的 DoclingDocument 表示格式;
- 各种导出格式和选项,包括 Markdown、HTML、 DocTags 和无损 JSON;
- 敏感数据和隔离环境的本地执行能力;
- 即插即用集成, 包括 LangChain、LlamaIndex、Crew AI 和用于代理 AI 的 Haystack;
- 对扫描的 PDF 和图像提供广泛的 OCR 支持;
- 支持多种可视化语言模型;
- 支持自动语音识别 (ASR) 模型的音频;
- 简单便捷的 CLI。
一、简单Demo
安装包
bash
pip install docling
官方提供的demo代码,
python
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2206.01062" # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]"
几行代码就可以将pdf文档转成markdown格式的文档,表格也转换的很成功。
注意:
1、若未科学上网,代码执行可能会失败;因为代码中会自动下载docling运行所依赖的模型以及默认的easyocr的模型文件;下载好的文件会放$HOME/.cache/docling/models 目录。
2、一般我们都会事先从huggface或modelscope下载好模型文件,下载如下文件,放同一个目录下。

二、pdf转markdown,图片本地存储
指定本地模型文件,图片保存到本地。
python
import pathlib
import logging
import time
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions, EasyOcrOptions
from docling.document_converter import PdfFormatOption, DocumentConverter, ImageFormatOption, PowerpointFormatOption, \
WordFormatOption, ExcelFormatOption, HTMLFormatOption
from docling_core.types.doc import ImageRefMode, PictureItem, TableItem
# # 指定模型路径
# easyocr_model_storage_directory = r"D:\Test\LLMTrain\DoclingTest\models_file\easyocr\Ceceliachenen\easyocr" # 使用绝对路径
# # 指定OCR模型
# easyocr_options = EasyOcrOptions()
# # 可以不设置,默认语言:["fr", "de", "es", "en"]
# easyocr_options.lang = ['ch_sim', 'en'] # 中英文
# easyocr_options.model_storage_directory = easyocr_model_storage_directory
artifacts_path = r"C:\Users\muxue\.cache\docling\models" # 使用绝对路径
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
# 设置支持OCR
pipeline_options.do_ocr = True
# 设置支持表结构
pipeline_options.do_table_structure = True
IMAGE_RESOLUTION_SCALE = 2.0
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
#pipeline_options.generate_page_images = True
#生成图片,必须要改配置为True
pipeline_options.generate_picture_images = True
# 指定OCR模型
#pipeline_options.ocr_options = easyocr_options
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options),
InputFormat.IMAGE: ImageFormatOption(pipeline_options=pipeline_options),
InputFormat.PPTX: PowerpointFormatOption(pipeline_options=pipeline_options),
InputFormat.DOCX: WordFormatOption(pipeline_options=pipeline_options),
InputFormat.XLSX: ExcelFormatOption(pipeline_options=pipeline_options),
InputFormat.HTML: HTMLFormatOption(pipeline_options=pipeline_options)
}
)
input_doc_path = r"D:\Test\test.pdf"
start_time = time.time()
conv_res = doc_converter.convert(input_doc_path)
output_dir = pathlib.Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_res.input.file.stem
# Save markdown with externally referenced pictures
md_filename = output_dir / f"{doc_filename}-with-image-refs.md"
conv_res.document.save_as_markdown(md_filename, image_mode=ImageRefMode.REFERENCED)
end_time = time.time() - start_time
print(f"Time taken: {end_time} seconds")
三、批量pdf转markdown
将多个pdf批量装成 markdown是常见操作。我们来实现一下吧。
import logging
import time
from collections.abc import Iterable
from pathlib import Path
import yaml
from docling_core.types.doc import ImageRefMode
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
def export2md(conv_results: Iterable[ConversionResult], output_dir: Path):
output_dir.mkdir(parents=True, exist_ok=True)
success_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
conv_res.document.save_as_markdown(
output_dir / f"{doc_filename}.md",
image_mode=ImageRefMode.REFERENCED,
)
logging.info(f"Converted {doc_filename} to Markdown successfully.")
def main():
artifacts_path = r"D:\muxue\model_file\docling_all" # 模型文件使用绝对路径
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
# 设置支持OCR
pipeline_options.do_ocr = True
# 设置支持表结构
pipeline_options.do_table_structure = True
IMAGE_RESOLUTION_SCALE = 2.0
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
#pipeline_options.generate_page_images = True
#生成图片,必须要改配置为True
pipeline_options.generate_picture_images = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
data_folder = Path(r"D:\muxue\orginal_file")
input_doc_paths = [
data_folder / "test.pdf",
data_folder / "2206.01062v1.pdf",
]
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths,
raises_on_error=False, # to let conversion run through all and examine results at the end
)
export2md(conv_results, Path("scratch"))
end_time = time.time() - start_time
print(f"Time taken: {end_time} seconds")
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
main()
四、PDF无损转Json
import pathlib
import logging
import time
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions, EasyOcrOptions
from docling.document_converter import PdfFormatOption, DocumentConverter, ImageFormatOption, PowerpointFormatOption, \
WordFormatOption, ExcelFormatOption, HTMLFormatOption
from docling_core.types.doc import ImageRefMode, PictureItem, TableItem
artifacts_path = r"D:\muxue\model_file\docling_all" # 使用绝对路径
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
# 设置支持OCR
pipeline_options.do_ocr = True
# 设置支持表结构
pipeline_options.do_table_structure = True
IMAGE_RESOLUTION_SCALE = 2.0
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
#pipeline_options.generate_page_images = True
#生成图片,必须要改配置为True
pipeline_options.generate_picture_images = True
# 指定OCR模型
#pipeline_options.ocr_options = easyocr_options
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options),
InputFormat.IMAGE: ImageFormatOption(pipeline_options=pipeline_options),
InputFormat.PPTX: PowerpointFormatOption(pipeline_options=pipeline_options),
InputFormat.DOCX: WordFormatOption(pipeline_options=pipeline_options),
InputFormat.XLSX: ExcelFormatOption(pipeline_options=pipeline_options),
InputFormat.HTML: HTMLFormatOption(pipeline_options=pipeline_options)
}
)
input_doc_path = r"D:\muxue\test.pdf"
start_time = time.time()
conv_res = doc_converter.convert(input_doc_path)
output_dir = pathlib.Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_res.input.file.stem
# Save markdown with externally referenced pictures
md_filename = output_dir / f"{doc_filename}.json"
conv_res.document.save_as_json(md_filename, image_mode=ImageRefMode.REFERENCED)
end_time = time.time() - start_time
print(f"Time taken: {end_time} seconds")
-
"无损 JSON" 在 Docling 中意味着:将文档的内在数据结构与详细元信息完整转到 JSON,并保证可以从 JSON 完整还原为同一个文档模型。
-
而 Markdown/HTML 导出是"有损" 的,因为这些格式省略了很多底层结构与元数据,只是适合人类阅读和简单内容展示。
五、Docling与第3方平台集成
Docling 与众多领先框架和工具的集成,比如LangChain、LlamaIndex和Crew AI等。
在LlamaIndex中,可以直接使用Docling作为阅读器,和DoclingNodeParser 可将DoclingReader 生成的 JSON/MarkDown 格式文档解析为 LlamaIndex 的节点。
python
from llama_index.readers.docling import DoclingReader
from llama_index.node_parser.docling import DoclingNodeParser
from llama_index.core import VectorStoreIndex
reader = DoclingReader(export_type=DoclingReader.ExportType.JSON)
node_parser = DoclingNodeParser()
documents = reader.load_data("your_file.pdf")
index = VectorStoreIndex.from_documents(
documents=documents,
transformations=[node_parser],
embed_model=EMBED_MODEL,
)
参考网址
github地址:https://github.com/docling-project/docling
官方文档:https://docling-project.github.io/docling/
LlamaIndex相关文档:https://docs.llamaindex.ai/en/stable/examples/data_connectors/DoclingReaderDemo/
https://docs.llamaindex.ai/en/stable/api_reference/node_parser/docling/