基于Grad-CAM(Gradient-weighted Class Activation Mapping)的可解释性分析

主要思想:在看某个类别c预测时,最后一层卷积特征图里,哪些空间位置对该类别的得分贡献最大。

为什么选用最后一层卷积特征图:1)语义最强 ,厚层聚合了大量前层证据,学到的往往是高级形态(核形、颗粒、核染色、Auer小体等),更贴近临床语言,早层只会告诉你"这里有条纹/对比度高";2)保留空间分辨率 ,最后一层卷积"是最靠近分类器且仍有空间网格 的位置,用它做热力图,既类相关又能定位到细胞/核区域;3)感受野刚刚好 ,随着层级的加深,感受野逐渐增大,最后几层的感受野已经足够覆盖整个细胞或其关键结构,而不是零碎纹理;4)数值更稳定 ,早层梯度非常嘈杂、容易受颜色/纹理干扰;最后一层卷积的梯度更类相关,热力图稳定性好。这是语义性、空间性和稳定性的折中点。

回答两个问题:1)这些探测器里,谁对这次"某类别 c"的判断更关键 ?2)在图上的哪些位置真正"驱动"了这次 c 的判定?

实现过程过程:

最后一层卷积的第k个通道特征图Ak,H*W维(这里要计算所有通道);

类别c的logit:yc(这个是什么:是模型对类别c的原始打分,还没有经过softmax和sigmoid的数值,一个样本对每个类别都会计算出一个值);

计算通道权重(通过梯度给每个通道分配话语权):

类别c的Grad-CAM热力图(未上采样前):

把Lc双线性差值回到输入大小,叠加到原图即可可视化(这一步是如何操作的)

适用于哪些情况:Grad-CAM 主要适用于有卷积层、能保留空间结构的深度学习模型(典型是 CNN 及其变体)。在 ViT 等 Transformer 中也能通过改造应用;而对没有空间维的模型(RNN、MLP),则不合适。

相关推荐
海底的星星fly1 天前
【Prompt学习技能树地图】生成知识提示技术的深度解析与应用
人工智能·学习·prompt
赵得C1 天前
智能体的范式革命:华为全栈技术链驱动下一代AI Agent
人工智能·华为·ai·ai编程
嵌入式-老费1 天前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰1 天前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
mm-q29152227291 天前
【天野学院5期】 第5期易语言半内存辅助培训班,主讲游戏——手游:仙剑奇侠传4,端游:神魔大陆2
人工智能·算法·游戏
谢景行^顾1 天前
深度学习-损失函数
人工智能·深度学习
xier_ran1 天前
关键词解释: LoRA(Low-Rank Adaptation)详解
人工智能
黄焖鸡能干四碗1 天前
信息安全管理制度(Word)
大数据·数据库·人工智能·智慧城市·规格说明书
paopao_wu1 天前
DeepSeek-OCR实战(01):基础运行环境搭建-Ubuntu
linux·人工智能·ubuntu·ai·ocr
Altair澳汰尔1 天前
新闻速递丨Altair RapidMiner 数据分析和 AI 平台助力企业加速智能升级:扩展智能体 AI 及分析生态系统
人工智能·ai·数据分析·仿真·cae·rapidminer·数据自动化