基于Grad-CAM(Gradient-weighted Class Activation Mapping)的可解释性分析

主要思想:在看某个类别c预测时,最后一层卷积特征图里,哪些空间位置对该类别的得分贡献最大。

为什么选用最后一层卷积特征图:1)语义最强 ,厚层聚合了大量前层证据,学到的往往是高级形态(核形、颗粒、核染色、Auer小体等),更贴近临床语言,早层只会告诉你"这里有条纹/对比度高";2)保留空间分辨率 ,最后一层卷积"是最靠近分类器且仍有空间网格 的位置,用它做热力图,既类相关又能定位到细胞/核区域;3)感受野刚刚好 ,随着层级的加深,感受野逐渐增大,最后几层的感受野已经足够覆盖整个细胞或其关键结构,而不是零碎纹理;4)数值更稳定 ,早层梯度非常嘈杂、容易受颜色/纹理干扰;最后一层卷积的梯度更类相关,热力图稳定性好。这是语义性、空间性和稳定性的折中点。

回答两个问题:1)这些探测器里,谁对这次"某类别 c"的判断更关键 ?2)在图上的哪些位置真正"驱动"了这次 c 的判定?

实现过程过程:

最后一层卷积的第k个通道特征图Ak,H*W维(这里要计算所有通道);

类别c的logit:yc(这个是什么:是模型对类别c的原始打分,还没有经过softmax和sigmoid的数值,一个样本对每个类别都会计算出一个值);

计算通道权重(通过梯度给每个通道分配话语权):

类别c的Grad-CAM热力图(未上采样前):

把Lc双线性差值回到输入大小,叠加到原图即可可视化(这一步是如何操作的)

适用于哪些情况:Grad-CAM 主要适用于有卷积层、能保留空间结构的深度学习模型(典型是 CNN 及其变体)。在 ViT 等 Transformer 中也能通过改造应用;而对没有空间维的模型(RNN、MLP),则不合适。

相关推荐
合方圆~小文15 小时前
4G定焦球机摄像头综合介绍产品指南
数据结构·数据库·人工智能
Coding茶水间15 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
yiersansiwu123d15 小时前
AI全球善治的困境突破与中国方案的实践路径
人工智能
老蒋新思维15 小时前
反脆弱性设计:创始人IP与AI智能体如何构建愈动荡愈强大的知识商业|创客匠人
人工智能·网络协议·tcp/ip·算法·机器学习·创始人ip·创客匠人
zyxzyx4915 小时前
AI 实战:从零搭建轻量型文本分类系统
大数据·人工智能·分类
AI小怪兽15 小时前
RF-DETR:实时检测Transformer的神经架构搜索,首个突破 60 AP 的实时检测器 | ICLR 2026 in Submission
人工智能·深度学习·yolo·目标检测·架构·transformer
黑客思维者15 小时前
机器学习003:无监督学习(概论)--机器如何学会“自己整理房间”
人工智能·学习·机器学习·无监督学习
子洋15 小时前
AI Agent 介绍
前端·人工智能·后端
黑客思维者15 小时前
阶跃星辰:从技术理想主义到多模态AI独角兽的崛起之路
人工智能·阶跃星辰·行业研究
长空任鸟飞_阿康15 小时前
LangGraph 技术详解:基于图结构的 AI 工作流与多智能体编排框架
人工智能·python·langchain