前面的内容后面再补,因为近期要C考核了,所以先准备下C考核所需的内容。
RTFSC(2)
整理一条指令在NEMU中的执行结果
从函数中跳转,宏嵌套中慢慢进入最终的代码,人肉gdb一下,
比如在sdb中执行一次si,那么根据cmd_si代码那我们会跳转到cpu_exec()中
static int cmd_si(char *args) {
if (args == NULL) {
cpu_exec(1);
return 0;
}
int i = atoi(args);
if (i <= 0) {
printf("Invalid argument '%s'\n", args);
} else {
cpu_exec(i);
}
return 0;
}
在cpu_exec()中我们进入execute()函数中。
/* Simulate how the CPU works. */
void cpu_exec(uint64_t n) {
g_print_step = (n < MAX_INST_TO_PRINT);//一次执行太多步就不打印了,bool类型的gprintstep就赋值为false
//printf("%d\n",nemu_state.state);
switch (nemu_state.state) {
case NEMU_END: case NEMU_ABORT: case NEMU_QUIT:
printf("Program execution has ended. To restart the program, exit NEMU and run again.\n");
return;//如果状态是结束了,出错了,退出了就打印"退出nemu"。
default: nemu_state.state = NEMU_RUNNING;//默认running
}
uint64_t timer_start = get_time();//获取执行指令前的时间
execute(n);
uint64_t timer_end = get_time();//获取执行指令后的时间
g_timer += timer_end - timer_start; //看执行了多久。
switch (nemu_state.state) {
case NEMU_RUNNING: nemu_state.state = NEMU_STOP; break;
case NEMU_END: case NEMU_ABORT:
Log("nemu: %s at pc = " FMT_WORD,
//nemu出错或者异常退出就用红色打印,正常退出就绿色打印。
(nemu_state.state == NEMU_ABORT ? ANSI_FMT("ABORT", ANSI_FG_RED) :
(nemu_state.halt_ret == 0 ? ANSI_FMT("HIT GOOD TRAP", ANSI_FG_GREEN) :
ANSI_FMT("HIT BAD TRAP", ANSI_FG_RED))),
nemu_state.halt_pc);
// fall through
case NEMU_QUIT: statistic();
}
}
在execute()中跳转到exec_once()中
static void execute(uint64_t n) {
Decode s;
initBuffer(&cb); // 初始化环形缓冲区,大小为BUFFER_SIZE
for (;n > 0; n --) {
exec_once(&s, cpu.pc);
g_nr_guest_inst ++;
trace_and_difftest(&s, cpu.pc);
if (nemu_state.state != NEMU_RUNNING) {break;}
IFDEF(CONFIG_DEVICE, device_update());
}/*条件编译宏,如果CONFIG_DEVICE被定义,则调用device_update函数,如果 CONFIG_DEVICE 没有被定义,
这一行什么都不会生成(等价于被注释掉)。*/
printBuffer(&cb);
}
从exec_once()中跳转到isa_exec_once()中。
static void exec_once(Decode *s, vaddr_t pc) {
s->pc = pc;//当前指令地址
s->snpc = pc;//静态下一条指令地址,默认为pc+4
// if(s->pc == 0x80001480){
// printf("找到一场入口地址\n");
// nemu_state.state = NEMU_STOP;
// }
isa_exec_once(s);
cpu.pc = s->dnpc;//动态下一条指令,可能跳转或者分支改变
#ifdef CONFIG_ITRACE//如果启用了 CONFIG_ITRACE,会记录指令的详细信息到日志缓冲区 s->logbuf:
char *p = s->logbuf;
p += snprintf(p, sizeof(s->logbuf), FMT_WORD ":", s->pc);//FMT_WORD:格式化字符串(如 "0x%08x"),用于输出 PC 地址。
//printf("0x%08x\n",s->pc);
//printf("0x%08x\n",s->snpc);
int ilen = s->snpc - s->pc; //计算指令长度
int i;
uint8_t *inst = (uint8_t *)&s->isa.inst;
// printf("inst = 0x%08x\n",s->isa.inst);
// printf("inst ***= 0x%08x\n", *inst);
#ifdef CONFIG_ISA_x86
for (i = 0; i < ilen; i ++) { //x86是小段,从低地址开始打印
#else
for (i = ilen - 1; i >= 0; i --) {//riscv是大段,从高地址开始打印
#endif
p += snprintf(p, 4, " %02x", inst[i]); //把指令打印出来
}
int ilen_max = MUXDEF(CONFIG_ISA_x86, 8, 4); //不是x86ilenmax就是4
int space_len = ilen_max - ilen; //计算需要填充的空格数
if (space_len < 0) space_len = 0; //
space_len = space_len * 3 + 1;
memset(p, ' ', space_len);
p += space_len;
void disassemble(char *str, int size, uint64_t pc, uint8_t *code, int nbyte);//反汇编指令
disassemble(p, s->logbuf + sizeof(s->logbuf) - p, //将反汇编指令出来后传到logbuf里面
MUXDEF(CONFIG_ISA_x86, s->snpc, s->pc), (uint8_t *)&s->isa.inst, ilen);
//muxdef,有点像 ?:,
enqueue(&cb, s->logbuf);
#endif
}
从isa_exec_once中在跳转到decode_exec()函数中
int isa_exec_once(Decode *s) {
s->isa.inst = inst_fetch(&s->snpc, 4);
//return一个0回去,但是现在并没有使用这个返回值,可以忽略他。
return decode_exec(s);
}
inst_fetch()
是在snpc中获取一条长度为4字节的指令赋值给s->inst,然后执行一遍decode_exec()并返回decode_exec()的返回值。
先一次性将decode_exec()代码全部贴出,很长
static int decode_exec(Decode *s) {
int rd = 0;
word_t src1 = 0, src2 = 0, imm = 0;
s->dnpc = s->snpc;
#define INSTPAT_INST(s) ((s)->isa.inst)
#define INSTPAT_MATCH(s, name, type, ... /* execute body */ ) { \
decode_operand(s, &rd, &src1, &src2, &imm, concat(TYPE_, type)); \
__VA_ARGS__ ; \
}
INSTPAT_START();
//INSTPAT(模式字符串, 指令名称, 指令类型, 指令执行操作);
INSTPAT("??????? ????? ????? ??? ????? 00101 11", auipc , U, R(rd) = s->pc + imm);
INSTPAT("??????? ????? ????? ??? ????? 01101 11", lui , U, R(rd) = imm);
INSTPAT("0000000 ????? ????? 101 ????? 00100 11", srli , I, R(rd) = src1 >> BITS(imm, 5, 0));
INSTPAT("0000000 ????? ????? 001 ????? 00100 11", slli , I, R(rd) = src1 << BITS(imm, 5, 0));
INSTPAT("0100000 ????? ????? 101 ????? 00100 11", srai , I, R(rd) = (int32_t)src1 >> BITS(imm , 4 , 0) );
INSTPAT("??????? ????? ????? 100 ????? 00000 11", lbu , I, R(rd) = Mr(src1 + imm, 1));
INSTPAT("??????? ????? ????? 000 ????? 00100 11", addi , I, R(rd) = src1 + imm);
INSTPAT("??????? ????? ????? 011 ????? 00100 11", sltiu , I, R(rd) = (src1 < imm) ? 1 : 0);
INSTPAT("??????? ????? ????? 010 ????? 00100 11", slti , I, R(rd) = ((int32_t)src1 < ((int32_t)imm)) ? 1 : 0);
INSTPAT("??????? ????? ????? 000 ????? 00000 11", lb , I, R(rd) = SEXT(Mr(src1 + imm, 2),8));
INSTPAT("??????? ????? ????? 001 ????? 00000 11", lh , I, R(rd) = SEXT(Mr(src1 + imm, 2),16));
INSTPAT("??????? ????? ????? 101 ????? 00000 11", lhu , I, R(rd) = Mr(src1 + imm, 2));
INSTPAT("??????? ????? ????? 010 ????? 00000 11", lw , I, R(rd) = Mr(src1 + imm, 4));
INSTPAT("??????? ????? ????? 111 ????? 00100 11", andi , I, R(rd) = src1 & imm);
INSTPAT("??????? ????? ????? 100 ????? 00100 11", xori , I, R(rd) = src1 ^ imm);
INSTPAT("??????? ????? ????? 110 ????? 00100 11", ori , I, R(rd) = src1 | imm);
//CSR寄存器
INSTPAT("??????? ????? ????? 001 ????? 11100 11", csrrw , I,
if(imm == 0x305){ //mtvec
R(rd) = cpu.mtvec;
cpu.mtvec = src1;
};
if(imm == 0x300){ //mstatus
R(rd) = cpu.mstatus;
cpu.mstatus = src1;
};
if(imm == 0x341){ //mepc
R(rd) = cpu.mepc;
cpu.mepc = src1;
};
if(imm == 0x342){ //mcause
R(rd) = cpu.mcause;
cpu.mcause = src1;
};
);
INSTPAT("0000000 00000 00000 000 00000 11100 11", ecall , I, s->dnpc = isa_raise_intr(11,s->pc);etrace());
INSTPAT("??????? ????? ????? 010 ????? 11100 11", csrrs , I,
if(imm == 0x305){ //mtvec
R(rd) = cpu.mtvec;
cpu.mtvec |= src1;
};
if(imm == 0x300){ //mstatus
R(rd) = cpu.mstatus;
cpu.mstatus |= src1;
};
if(imm == 0x341){ //mepc
R(rd) = cpu.mepc;
cpu.mepc |= src1;
};
if(imm == 0x342){ //mcause
// printf("??????????????????????????*****\n");
R(rd) = cpu.mcause;
cpu.mcause |= src1;
};
);
INSTPAT("??????? ????? ????? 010 ????? 01000 11", sw , S, Mw(src1 + imm, 4, src2));
INSTPAT("??????? ????? ????? 001 ????? 01000 11", sh , S, Mw(src1 + imm, 2, src2));
INSTPAT("??????? ????? ????? 000 ????? 01000 11", sb , S, Mw(src1 + imm, 1, src2));
INSTPAT("??????? ????? ????? 011 ????? 01000 11", sd , S, Mw(src1 + imm, 8, src2));
INSTPAT("??????? ????? ????? ??? ????? 11011 11", jal , J, R(rd) = s->pc + 4;
s->dnpc = s->pc + imm;
IFDEF(CONFIG_FTRACE, {
if (rd == 1) {
call_trace(s->pc, s->dnpc);
}})
);
INSTPAT("??????? ????? ????? 000 ????? 11001 11", jalr , I, R(rd) = s->pc + 4;
s->dnpc = (src1 + imm) & (~1);
IFDEF(CONFIG_FTRACE,{
if (s->isa.inst == 0x00008067)
ret_trace(s->pc);
else if (rd == 1) {call_trace(s->pc, s->dnpc);}
else if (rd == 0 && imm == 0) {call_trace(s->pc, s->dnpc);}
})
);
INSTPAT("0000000 ????? ????? 101 ????? 01100 11", srl , R, R(rd) = src1 >> BITS(src2, 4, 0));
INSTPAT("0000000 ????? ????? 000 ????? 01100 11", add , R, R(rd) = src1 + src2);
INSTPAT("0000000 ????? ????? 001 ????? 01100 11", sll , R, R(rd) = src1 << BITS(src2 , 4 , 0));
INSTPAT("0000000 ????? ????? 010 ????? 01100 11", slt , R, R(rd) = ((int32_t)src1 < (int32_t)src2) ? 1 : 0);
INSTPAT("0000000 ????? ????? 011 ????? 01100 11", sltu , R, R(rd) = src1 < src2 ? 1 : 0);
INSTPAT("0000000 ????? ????? 100 ????? 01100 11", xor , R, R(rd) = src1 ^ src2);
INSTPAT("0000000 ????? ????? 110 ????? 01100 11", or , R, R(rd) = src1 | src2);
INSTPAT("0000000 ????? ????? 111 ????? 01100 11", and , R, R(rd) = src1 & src2);
INSTPAT("0100000 ????? ????? 101 ????? 01100 11", sra , R, R(rd) = (int32_t)src1 >> BITS(src2 , 4 , 0));
INSTPAT("0100000 ????? ????? 000 ????? 01100 11", sub , R, R(rd) = src1 - src2);
INSTPAT("0000001 ????? ????? 000 ????? 01100 11", mul , R, R(rd) = (unsigned)src1 * (unsigned)src2);
//INSTPAT("0000001 ????? ????? 100 ????? 01100 11", div , R, R(rd) = src1 / src2);
//INSTPAT("0000001 ????? ????? 110 ????? 01100 11", rem , R, R(rd) = src1 % src2);
//INSTPAT("0000001 ????? ????? 111 ????? 01100 11", remu , R, R(rd) = (unsigned)src1 % (unsigned)src2);
//INSTPAT("0000001 ????? ????? 101 ????? 01100 11", divu , R, R(rd) = (unsigned)src1 / (unsigned)src2);
INSTPAT("0000001 ????? ????? 001 ????? 01100 11", mulh , R, R(rd) = ((int64_t)(int32_t)src1 * (int64_t)(int32_t)src2) >> 32;);
INSTPAT("0000001 ????? ????? 010 ????? 01100 11", mulhsu , R, R(rd) = ((int64_t)(int32_t)src1 * (int64_t)(uint32_t)src2) >> 32;);
INSTPAT("0000001 ????? ????? 011 ????? 01100 11", mulhu , R, R(rd) = ((int64_t)(uint32_t)src1 * (int64_t)(uint32_t)src2) >> 32;);
INSTPAT("0000001 ????? ????? 100 ????? 01100 11", div , R, if (src2 == 0) R(rd) = -1;else if ((int32_t)src1 == INT32_MIN && (int32_t)src2 == -1) R(rd) = INT32_MIN;else R(rd) = (int32_t)src1 / (int32_t)src2;);
INSTPAT("0000001 ????? ????? 101 ????? 01100 11", divu , R, if (src2 == 0) R(rd) = 0xFFFFFFFF;else R(rd) = (uint32_t)src1 / (uint32_t)src2;);
INSTPAT("0000001 ????? ????? 110 ????? 01100 11", rem , R, if (src2 == 0) R(rd) = (int32_t)src1;else if ((int32_t)src1 == INT32_MIN && (int32_t)src2 == -1) R(rd) = 0;else R(rd) = (int32_t)src1 % (int32_t)src2;);
INSTPAT("0000001 ????? ????? 111 ????? 01100 11", remu , R, if (src2 == 0) R(rd) = (uint32_t)src1;else R(rd) = (uint32_t)src1 % (uint32_t)src2;);
INSTPAT("0011000 00010 00000 000 0000 011100 11", mret , R, s->dnpc = cpu.mepc);
//div注释:
//匹配 div 指令(有符号除法)。
//如果除数 src2 为 0,结果规定为 -1。
//如果被除数是最小负数(INT32_MIN),除数为 -1,结果规定为 INT32_MIN(防止溢出)。
//否则正常做有符号除法。
//printf("mulh:%lx\n", (int64_t)(~src1+1) * (int64_t)src2));
//正确的a5:0001 1001 1101 0010 1001 1010 1011 1001
//INSTPAT("0000001 ????? ????? 001 ????? 01100 11", mulh , R, R(rd) = SEXT(src1 * src2, 32));
//把寄存器 x[rs2]乘到寄存器 x[rs1]上,都视为 2 的补码,将乘积的高位写入 x[rd]。
INSTPAT("??????? ????? ????? 000 ????? 11000 11", beq , B,
// if(s->pc == 0x800115c0){
// printf("src1 =%d\n",src1);
// printf("src2 =%d\n",src2);
// printf("pc =0x%08x\n",s->pc);
// printf("imm =0x%08x\n",imm);
// printf("dnpc =0x%08x\n",s->dnpc);
// }
// printf("src1 =%d\n",src1);printf("src2 =%d\n",src2);
// printf("pc =0x%08x\n",s->pc);printf("imm =0x%08x\n",imm);
// printf("dnpc =0x%08x\n",s->dnpc);
if(src1 == src2) s->dnpc = s->pc + imm);
INSTPAT("??????? ????? ????? 001 ????? 11000 11", bne , B, if(src1 != src2) s->dnpc = s->pc + imm);
INSTPAT("??????? ????? ????? 100 ????? 11000 11", blt , B, s->dnpc = ((int32_t)src1< (int32_t)src2) ? s->pc + imm : s->dnpc);
INSTPAT("??????? ????? ????? 101 ????? 11000 11", bge , B, s->dnpc = ((int32_t)src1>=(int32_t)src2) ? s->pc + imm : s->dnpc);
INSTPAT("??????? ????? ????? 110 ????? 11000 11", bltu , B, s->dnpc = (src1< src2) ? s->pc + imm : s->dnpc);
INSTPAT("??????? ????? ????? 111 ????? 11000 11", bgeu , B, s->dnpc = (src1>=src2) ? s->pc + imm : s->dnpc);
INSTPAT("0000000 00001 00000 000 00000 11100 11", ebreak , N, NEMUTRAP(s->pc, R(10))); // R(10) is $a0
INSTPAT("??????? ????? ????? ??? ????? ????? ??", inv , N, INV(s->pc));
INSTPAT_END();
R(0) = 0; // reset $zero to 0
return 0;
}
其中INSTPAT()
意思是
首先我们来解析一下里面的宏函数
- 先来看一下这个
INSTPAT_MATCH()
定义了一条模式匹配规则
INSTPAT(模式字符串, 指令名称, 指令类型, 指令执行操作);
如果匹配上了,那就直接用C语言的goto跳转到INSTPAT_END
表示为
#define INSTPAT_MATCH(s, name, type, ... /* execute body */ ) { \
decode_operand(s, &rd, &src1, &src2, &imm, concat(TYPE_, type)); \
__VA_ARGS__ ; \
}
其中的s是译码所需的信息比如pc,snpc,dnpc,isa,logbuf(用于ITRACE)
其中的decode_operand
static void decode_operand(Decode *s, int *rd, word_t *src1, word_t *src2, word_t *imm, int type) {
uint32_t i = s->isa.inst;
int rs1 = BITS(i, 19, 15);
int rs2 = BITS(i, 24, 20);
*rd = BITS(i, 11, 7);
switch (type) {
case TYPE_I: src1R(); immI(); break;
case TYPE_U: immU(); break;
case TYPE_S: src1R(); src2R(); immS(); break;
case TYPE_J: immJ(); break;
case TYPE_B: src1R(); src2R(); immB(); break;
case TYPE_R: src1R(); src2R(); break;
}
}
理解为译码的预处理,BITS()
的用法有点像verilog
中的变量[1:0]
的味道,也就是取这个区间的位宽,在看riscv手册中提到,指令中的源寄存器,目的寄存器,立即数基本上都有对应的位置。如果检测到一条指令是什么类型的便把需要的值赋给rs1,rs2,*rd,imm即可。此外SEXT()
用于符号扩展。在匹配过程最后有一条inv
的规则,如果前面所有的匹配模式都没有成功那就把此指令视为非法指令
此时取指、译码功能便实现了,接下来就是执行,访存、回写。
INSTPAT("??????? ????? ????? ??? ????? 00101 11", auipc , U, R(rd) = s->pc + imm);
都在后面的R(rd) = s->pc + imm
实现了。
这个操作懂了之后,后面运行更多的程序你就知道怎么做了。
首先程序会被riscv工具链交叉编译之后生成机器码之后将一串数据放到img中,你的nemu就根据img的值不断取指、译码、执行、访存、回写等等。那你此时只需要去看am的cpu-test被汇编成什么指令,比如展示一下dummy.c
汇编出来的东西放在了dummy-riscv32-nemu.txt
,你就只需看你少了什么指令然后补充上去就可以了。
下一期介绍一下cpu-test一堆例程是如何跑在nemu上运行的,顺便复习一下对AM的理解。