逐时nc数据批量处理为日平均

现有1系列的nc数据,每个数据格式如下:

需要进行批量处理将数据处理为日平均的tif,可使用下列脚本:

python 复制代码
import os
import xarray as xr
import pandas as pd
import multiprocessing as mul
import numpy as np
from rasterio.transform import from_origin
import rasterio
from datetime import datetime

def save_as_geotiff(data_array, lons, lats, filename):
    """将数据保存为 GeoTIFF 文件"""
    # 计算仿射变换参数
    transform = from_origin(
        lons.min(),  
        lats.max(),  
        (lons.max() - lons.min()) / len(lons),  
        (lats.max() - lats.min()) / len(lats)   
    )

    with rasterio.open(
        filename,
        'w',
        driver='GTiff',
        height=len(lats),
        width=len(lons),
        count=1,
        dtype=data_array.dtype,
        crs='EPSG:4326',  # WGS84 坐标系
        transform=transform,
    ) as dst:
        dst.write(data_array, 1)  

def process_snow_daily_average(args):
    """处理雪深数据并计算日平均"""
    inpath, outpath, start_year, end_year = args
    
    for year in range(start_year, end_year + 1):
        for month in range(1, 13):
            filename = f"snow_{year}_{month:02d}.nc"
            file_path = os.path.join(inpath, filename)
            
            if not os.path.exists(file_path):
                print(f"Warning: File {file_path} does not exist, skipping...")
                continue
            
            try:
                ds = xr.open_dataset(file_path)
                
                snow_data = ds['sde']
                
                time_values = pd.to_datetime(snow_data.valid_time.values)
                dates = [t.date() for t in time_values]  
                
                unique_dates = sorted(set(dates))
                
                output_year_path = os.path.join(outpath, f"y{year}")
                os.makedirs(output_year_path, exist_ok=True)
                
                for current_date in unique_dates:
                    date_mask = [d == current_date for d in dates]
                    daily_data = snow_data[date_mask, :, :]
                    
                    daily_avg = daily_data.mean(dim='valid_time', skipna=True)
                    
                    lons = daily_data.longitude.values
                    lats = daily_data.latitude.values
                    
                    outname = os.path.join(
                        output_year_path,
                        f"snow_{current_date.strftime('%Y%m%d')}.tif"
                    )
                    
                    save_as_geotiff(daily_avg.values, lons, lats, outname)
                    print(f"{outname} has been converted!")
                
                
                ds.close()
                
            except Exception as e:
                print(f"Error processing file {file_path}: {str(e)}")
                continue

if __name__ == "__main__":
    inpath = r"data/era5_sd_2025/1981_1989"  
    outpath = r"data/era5_sd_2025/daily_1981_1989"  
    start_year = 1981  
    end_year = 1989    

    num_processes = min(8, os.cpu_count())  # 使用较少的进程

    total_years = end_year - start_year + 1
    years_per_process = max(1, total_years // num_processes)

    args_list = []
    for i in range(num_processes):
        current_start = start_year + i * years_per_process
        current_end = min(current_start + years_per_process - 1, end_year)

        if i == num_processes - 1:
            current_end = end_year

        if current_start > end_year:
            break

        args_list.append((inpath, outpath, current_start, current_end))

    with mul.Pool(processes=num_processes) as pool:
        pool.map(process_snow_daily_average, args_list)

    print('--'*50)
    print('all jobs have finished!!!')
相关推荐
星星上的吴彦祖6 分钟前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互
爱笑的眼睛1131 分钟前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
0思必得01 小时前
[Web自动化] HTTP/HTTPS协议
前端·python·http·自动化·网络基础·web自动化
rgb2gray2 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
氵文大师2 小时前
A机通过 python -m http.server 下载B机的文件
linux·开发语言·python·http
程序员爱钓鱼2 小时前
用 Python 批量生成炫酷扫光 GIF 动效
后端·python·trae
封奚泽优2 小时前
下降算法(Python实现)
开发语言·python·算法
java1234_小锋3 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 自定义字符图片数据集
python·深度学习·cnn·车牌识别
爱笑的眼睛113 小时前
深入理解MongoDB PyMongo API:从基础到高级实战
java·人工智能·python·ai
辣椒酱.3 小时前
jupyter相关
python·jupyter