深入解析 Apache RocketMQ架构组成与核心组件作用

一、RocketMQ 核心架构图

架构特点

完全无单点:NameServer 集群无状态,Broker 主从高可用。

水平扩展:Broker 可无限横向扩展,Topic 可跨多个 Broker。

Pull 模型:Consumer 主动拉取,可控消费速度,避免压垮消费者。

二、四大核心组件详解


1. Producer(生产者)------ 消息的"发件人"

职责

  • 创建并发送消息到指定 Topic。
  • 支持同步、异步、单向发送模式。
  • 自动从 NameServer 获取 Topic 路由信息(Broker 地址列表)。
  • 支持消息重试、事务消息、顺序消息、延迟消息。

关键概念

** Producer Group:**生产者组,用于标识一类 Producer(事务消息回查用)。

Tag 消息标签,用于 Consumer 端过滤(如 TagA || TagB)。

** Key:**消息业务唯一键,用于精确查询和去重。

java 复制代码
DefaultMQProducer producer = new DefaultMQProducer("ProducerGroup1");
producer.setNamesrvAddr("localhost:9876");
producer.start();

Message msg = new Message("OrderTopic", "CreateOrder", "orderId_123", "Hello RocketMQ".getBytes());
SendResult result = producer.send(msg); // 同步发送
System.out.println("Send Status: " + result.getSendStatus());

2. Consumer(消费者)------ 消息的"收件人"

职责

  • 从 Broker 拉取消息并处理。
  • 支持集群消费(Clustering)和广播消费(Broadcasting)。
  • 自动从 NameServer 获取路由,负载均衡分配 Queue。
  • 支持消费重试、死信队列、消费位点(Offset)持久化。

关键概念

** Consumer Group:**消费者组,同一组内负载均衡消费(每条消息只被组内一个 Consumer 消费)。

MessageListener 消息监听器,实现 consumeMessage() 方法处理业务逻辑。

** Offset:**消费位点,记录 Consumer 已消费到的位置(存储在 Broker 或本地)。

java 复制代码
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("ConsumerGroup1");
consumer.setNamesrvAddr("localhost:9876");
consumer.subscribe("OrderTopic", "*"); // 订阅所有 Tag

consumer.registerMessageListener((MessageListenerConcurrently) (msgs, context) -> {
    for (MessageExt msg : msgs) {
        System.out.println("Received: " + new String(msg.getBody()));
        // 处理业务逻辑
    }
    return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; // 消费成功
});

consumer.start();

3. Broker(消息服务器)------ 消息的"邮局 + 仓库"

职责

  • 接收 Producer 发送的消息,存储到 CommitLog(顺序写磁盘)。
  • 响应 Consumer 的拉取请求,从 ConsumeQueue + IndexFile 快速检索。
  • 管理 Topic、Queue、Consumer Offset、权限控制等。
  • 主从同步:Master Broker 接收读写,Slave Broker 只读 + 同步数据(高可用)。

核心存储结构

** CommitLog:**所有 Topic 消息混合顺序写入(高性能关键)。

** ConsumeQueue:**每个 Queue 一个文件,存储消息在 CommitLog 的 offset、size、tag hash(供 Consumer 快速定位)。

** IndexFile:**基于 Key 的哈希索引,支持按 Key 查询消息。

高可用模式

异步复制:Master 写成功即返回,异步同步给 Slave(高性能,可能丢少量数据)。

同步双写:Master + Slave 都写成功才返回(强一致,性能略低)。


4. NameServer(路由注册中心)------ 消息的"DNS 服务器"

职责

  • 无状态、轻量级:多个 NameServer 之间无通信,数据最终一致。
  • 路由管理:Broker 启动时向所有 NameServer 注册 Topic 路由信息(含 Master/Slave 地址)。
  • 路由发现:Producer/Consumer 定时(默认 30s)从 NameServer 拉取最新路由表。
  • 心跳检测:NameServer 每 10s 检测 Broker 心跳,超时(120s)则剔除路由。

为什么不用 ZooKeeper?

RocketMQ 追求极致性能与简单性,NameServer 无选举、无 Watch,比 ZK 更轻量、更稳定。

部署建议

至少部署 2 个 NameServer,Producer/Consumer 配置多个地址(逗号分隔)。

NameServer 不存储消息,宕机不影响已建立连接的读写(路由缓存有效期内)。

三、核心概念:Topic、Queue、Group、Tag

概念 说明 类比
Topic 消息主题,一类消息的逻辑分类(如 OrderTopic, LogTopic 邮箱的"收件箱分类"
Queue Topic 的分区,一个 Topic 可分多个 Queue,分布在不同 Broker 上(并行消费) 邮箱的"分拣格子"
Producer Group 一类 Producer 的标识,用于事务消息回查 发件人"部门"
Consumer Group 一类 Consumer 的标识,组内负载均衡消费 收件人"工作组"
Tag 消息标签,用于 Consumer 端二次过滤(如 TagA, TagB 邮件"标签/优先级"
Key 消息业务唯一键,用于查询、去重(如订单ID) 邮件"追踪号"

最佳实践

  1. Topic 按业务域划分(如 Order, Payment, User)。
  2. Queue 数量 = 消费并发度上限(建议 8~32 个,根据业务调整)。
  3. 同一业务用同一个 Consumer Group,避免重复消费。

四、消息全流程:从发送到消费

关键点

  • Producer/Consumer 与 NameServer 是"查询关系",非强依赖。
  • Broker 是消息存储与转发的核心,需保证高可用。
  • Consumer 主动 Pull,可控制消费速度(背压机制)。

五、高级特性与生产实践

1. 顺序消息(Orderly Message)

保证同一业务 ID(如订单ID)的消息按发送顺序消费。

实现:Producer 按 shardingKey 选择固定 Queue,Consumer 单线程消费该 Queue。

场景:订单创建 → 付款 → 发货 → 完成。

2. 事务消息(Transactional Message)

实现"本地事务 + 消息发送"的最终一致性。

流程:发送 Half 消息 → 执行本地事务 → Commit/Rollback → Broker 回查(若超时)。

场景:扣库存 + 发订单消息。

3. 延迟消息(Delay Message)

消息发送后,延迟指定时间才对 Consumer 可见。

级别:支持 18 个固定延迟级别(1s ~ 2h)。

场景:订单超时未支付自动取消。

4. 死信队列(DLQ - Dead Letter Queue)

消费失败超过最大重试次数(默认 16 次)的消息,进入死信队列。

Topic%DLQ% + ConsumerGroupName

处理:人工干预或定时任务补偿。

相关推荐
程序员泠零澪回家种桔子5 小时前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
GIOTTO情5 小时前
舆情监测系统选型与技术落地:Infoseek 字节探索全栈架构解析与实战
架构
island13146 小时前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
C澒6 小时前
前端整洁架构(Clean Architecture)实战解析:从理论到 Todo 项目落地
前端·架构·系统架构·前端框架
roman_日积跬步-终至千里6 小时前
【架构实战-Spring】动态数据源切换方案
架构
C澒6 小时前
Remesh 框架详解:基于 CQRS 的前端领域驱动设计方案
前端·架构·前端框架·状态模式
晚霞的不甘6 小时前
CANN 编译器深度解析:UB、L1 与 Global Memory 的协同调度机制
java·后端·spring·架构·音视频
C澒6 小时前
前端分层架构实战:DDD 与 Clean Architecture 在大型业务系统中的落地路径与项目实践
前端·架构·系统架构·前端框架
Re.不晚7 小时前
MySQL进阶之战——索引、事务与锁、高可用架构的三重奏
数据库·mysql·架构
松☆7 小时前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构