3.1.9 生产“稳”担当:Master 服务启动源码全方位解析

作者 | 李杰 移动云,Apache DolphinScheduler贡献者

在现代数据驱动的企业中,工作流调度系统是数据管道(Data Pipeline)的"中枢神经"。从 ETL 任务到机器学习训练,从报表生成到实时监控,几乎所有关键业务都依赖于一个稳定、高效、易扩展的调度引擎。

笔者认为Apache DolphinScheduler 3.1.9是稳定且广泛使用的版本,故本文将聚焦于这一版本,解析 Master 服务启动时相关流程,深入其源码核心,剖析其架构设计、模块划分与关键实现机制,帮助开发者理解 Master "如何工作",并为进一步二次开发或性能优化打下基础。

本系列文章分为 3 个部分,分别为 Master Server 启动流程、Worker server 启动流程,以及相关流程图,本文为第一部分。

1. Master Server启动核心概览

  • 代码入口:org.apache.dolphinscheduler.server.master.MasterServer#run
JavaScript 复制代码
public void run() throws SchedulerException {
        // 1、init rpc server
        this.masterRPCServer.start();

        // 2、install task plugin
        this.taskPluginManager.loadPlugin();

        // 3、self tolerant
        this.masterRegistryClient.start();
        this.masterRegistryClient.setRegistryStoppable(this);

        // 4、master 调度
        this.masterSchedulerBootstrap.init();
        this.masterSchedulerBootstrap.start();

        // 5、事件执行服务
        this.eventExecuteService.start();
        // 6、容错机制
        this.failoverExecuteThread.start();

        // 7、Quartz调度
        this.schedulerApi.start();

        ...
    }

1.1 rpc启动:

  • 描述:注册相关命令的process处理器,如task执行中、task执行结果、终止task等。
  • 代码入口:org.apache.dolphinscheduler.server.master.rpc.MasterRPCServer#start
JavaScript 复制代码
public void start() {
         ...
        // 任务执行中的请求处理器
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_EXECUTE_RUNNING, taskExecuteRunningProcessor);
        // 任务执行结果的请求处理器
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_EXECUTE_RESULT, taskExecuteResponseProcessor);
        // 任务终止的请求处理器
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_KILL_RESPONSE, taskKillResponseProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.STATE_EVENT_REQUEST, stateEventProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_FORCE_STATE_EVENT_REQUEST, taskEventProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_WAKEUP_EVENT_REQUEST, taskEventProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.CACHE_EXPIRE, cacheProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_REJECT, taskRecallProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.WORKFLOW_EXECUTING_DATA_REQUEST,
                workflowExecutingDataRequestProcessor);
        // 流式任务启动请求处理器
        this.nettyRemotingServer.registerProcessor(CommandType.TASK_EXECUTE_START, taskExecuteStartProcessor);

        // logger server
        // log相关,查看或者获取日志等操作的处理器
        this.nettyRemotingServer.registerProcessor(CommandType.GET_LOG_BYTES_REQUEST, loggerRequestProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.ROLL_VIEW_LOG_REQUEST, loggerRequestProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.VIEW_WHOLE_LOG_REQUEST, loggerRequestProcessor);
        this.nettyRemotingServer.registerProcessor(CommandType.REMOVE_TAK_LOG_REQUEST, loggerRequestProcessor);

        this.nettyRemotingServer.start();
        logger.info("Started Master RPC Server...");
    }

1.2 任务插件初始化:

  • 描述:task的相关模板操作,如创建task、解析task参数、获取task资源信息等。对于该插件,api、master、worker都需要进行注册,在master的作用是设置数据源和UDF信息等。

1.3 Self Tolerant(Master注册):

  • 描述:将自身信息注册至注册中心(本文以zookeeper为例),同时监听自身、其他master和所有worker节点的注册情况变化,从而做相应的容错处理。
  • 代码入口:org.apache.dolphinscheduler.server.master.registry.MasterRegistryClient#start
JavaScript 复制代码
public void start() {
        try {
            this.masterHeartBeatTask = new MasterHeartBeatTask(masterConfig, registryClient);
            //  1、将自身信息注册至注册中心;
            registry();
            //  2、监听自身与注册中心的连接情况;
            registryClient.addConnectionStateListener(
                    new MasterConnectionStateListener(masterConfig, registryClient, masterConnectStrategy));
            //  3、监听其他master与所有worker在注册中心的活跃情况,做相应的容错工作处理
            //  如对灭亡的master上面的任务进行容错,同时将在worker节点上kill任务
            registryClient.subscribe(REGISTRY_DOLPHINSCHEDULER_NODE, new MasterRegistryDataListener());
        } catch (Exception e) {
            throw new RegistryException("Master registry client start up error", e);
        }
    }

1.4 Master 调度

  • 描述:一个扫描线程,定时扫描数据库中的 command 表,根据不同的命令类型进行不同的业务操作,是工作流启动、实例容错等处理的核心逻辑。
  • 代码入口:org.apache.dolphinscheduler.server.master.runner.MasterSchedulerBootstrap#run
JavaScript 复制代码
public void run() {
        while (!ServerLifeCycleManager.isStopped()) {
            try {
                if (!ServerLifeCycleManager.isRunning()) {
                    // the current server is not at running status, cannot consume command.
                    logger.warn("The current server {} is not at running status, cannot consumes commands.", this.masterAddress);
                    Thread.sleep(Constants.SLEEP_TIME_MILLIS);
                }
                // todo: if the workflow event queue is much, we need to handle the back pressure
                boolean isOverload =
                        OSUtils.isOverload(masterConfig.getMaxCpuLoadAvg(), masterConfig.getReservedMemory());
                // 如果cpu以及memory负载过高,那么就暂时不处理命令
                if (isOverload) {
                    logger.warn("The current server {} is overload, cannot consumes commands.", this.masterAddress);
                    MasterServerMetrics.incMasterOverload();
                    Thread.sleep(Constants.SLEEP_TIME_MILLIS);
                    continue;
                }
                // 从数据库中获取commands执行命令,如启动工作流,容错工作流实例等
                List<Command> commands = findCommands();
                if (CollectionUtils.isEmpty(commands)) {
                    // indicate that no command ,sleep for 1s
                    Thread.sleep(Constants.SLEEP_TIME_MILLIS);
                    continue;
                }

                // 将相应的commands转为工作流实例,转换成功后删除相应的commands  
                List<ProcessInstance> processInstances = command2ProcessInstance(commands);
                if (CollectionUtils.isEmpty(processInstances)) {
                    // indicate that the command transform to processInstance error, sleep for 1s
                    Thread.sleep(Constants.SLEEP_TIME_MILLIS);
                    continue;
                }
                MasterServerMetrics.incMasterConsumeCommand(commands.size());

                processInstances.forEach(processInstance -> {
                    try {
                        LoggerUtils.setWorkflowInstanceIdMDC(processInstance.getId());
                        if (processInstanceExecCacheManager.contains(processInstance.getId())) {
                            logger.error(
                                    "The workflow instance is already been cached, this case shouldn't be happened");
                        }
                        // 创建工作流执行线程,负责DAG任务切分、任务提交监控、各种不同事件类型的逻辑处理
                        WorkflowExecuteRunnable workflowRunnable = new WorkflowExecuteRunnable(processInstance,
                                processService,
                                processInstanceDao,
                                nettyExecutorManager,
                                processAlertManager,
                                masterConfig,
                                stateWheelExecuteThread,
                                curingGlobalParamsService);
                        // 此处将每个工作流执行线程进行缓存,后续从缓存中获取该线程进行执行
                        processInstanceExecCacheManager.cache(processInstance.getId(), workflowRunnable);
                        // 将启动工作流事件放入工作流事件队列中,然后workflowEventLooper不断从队列中获取事件进行处理
                        workflowEventQueue.addEvent(new WorkflowEvent(WorkflowEventType.START_WORKFLOW,
                                processInstance.getId()));
                    } finally {
                        LoggerUtils.removeWorkflowInstanceIdMDC();
                    }
                });
            } catch (InterruptedException interruptedException) {
                logger.warn("Master schedule bootstrap interrupted, close the loop", interruptedException);
                Thread.currentThread().interrupt();
                break;
            } catch (Exception e) {
                logger.error("Master schedule workflow error", e);
                // sleep for 1s here to avoid the database down cause the exception boom
                ThreadUtils.sleep(Constants.SLEEP_TIME_MILLIS);
            }
        }
    }

上述步骤产生工作流事件后,WorkflowEventLooper不断地消费处理:

JavaScript 复制代码
public void run() {
        WorkflowEvent workflowEvent = null;
        while (!ServerLifeCycleManager.isStopped()) {
                ...
                workflowEvent = workflowEventQueue.poolEvent();
                LoggerUtils.setWorkflowInstanceIdMDC(workflowEvent.getWorkflowInstanceId());
                logger.info("Workflow event looper receive a workflow event: {}, will handle this", workflowEvent);
                WorkflowEventHandler workflowEventHandler =
                        workflowEventHandlerMap.get(workflowEvent.getWorkflowEventType());
                // 相应的事件处理器来处理工作流事件,主要功能是执行上述中缓存的工作流执行线程WorkflowExecuteRunnable
                workflowEventHandler.handleWorkflowEvent(workflowEvent);
               ...
        }
    }

启动WorkflowExecuteRunnable时,主要功能是初始化DAG、提交且分发task等:

JavaScript 复制代码
public WorkflowSubmitStatue call() {
             ...
            LoggerUtils.setWorkflowInstanceIdMDC(processInstance.getId());
            if (workflowRunnableStatus == WorkflowRunnableStatus.CREATED) {
               // 构建工作流的DAG
                buildFlowDag();
                workflowRunnableStatus = WorkflowRunnableStatus.INITIALIZE_DAG;
                logger.info("workflowStatue changed to :{}", workflowRunnableStatus);
            }
            if (workflowRunnableStatus == WorkflowRunnableStatus.INITIALIZE_DAG) {
                // 初始化相关队列, 将相关队列都清空
                initTaskQueue();
                workflowRunnableStatus = WorkflowRunnableStatus.INITIALIZE_QUEUE;
                logger.info("workflowStatue changed to :{}", workflowRunnableStatus);
            }
            if (workflowRunnableStatus == WorkflowRunnableStatus.INITIALIZE_QUEUE) {
                // 从起始节点开始执行,提交所有节点任务
                submitPostNode(null);
                workflowRunnableStatus = WorkflowRunnableStatus.STARTED;
                logger.info("workflowStatue changed to :{}", workflowRunnableStatus);
            }
            return WorkflowSubmitStatue.SUCCESS;
            ...
    }

此时parentNodeCode为null,表示从根节点开始启动所有node:

JavaScript 复制代码
private void submitPostNode(String parentNodeCode) throws StateEventHandleException {
       ...
       // 根据起点节点parentNodeCode获取其后续待执行的task
       List<TaskInstance> taskInstances=...
        for (TaskInstance task : taskInstances) {
            ...
            // 将task放到 "预提交"队列 readyToSubmitTaskQueue
            addTaskToStandByList(task);
        }
        // 处理"预提交"队列readyToSubmitTaskQueue,提交task
        submitStandByTask();
        ...
    }
JavaScript 复制代码
public void submitStandByTask() throws StateEventHandleException {
        int length = readyToSubmitTaskQueue.size();
        for (int i = 0; i < length; i++) {
            TaskInstance task = readyToSubmitTaskQueue.peek();
            ...
            // 检测task的依赖关系是否构建成功,如果成功,则进行提交操作
            DependResult dependResult = getDependResultForTask(task);
            if (DependResult.SUCCESS == dependResult) {
                logger.info("The dependResult of task {} is success, so ready to submit to execute", task.getName());
                // 提交task
                Optional<TaskInstance> taskInstanceOptional = submitTaskExec(task);
                // 提交失败
                if (!taskInstanceOptional.isPresent()) {
                ...
                } else {
                    // 提交成功,从"预提交"队里中清除该task
                    removeTaskFromStandbyList(task);
                }
            } 
            ...
        }
    }
JavaScript 复制代码
private Optional<TaskInstance> submitTaskExec(TaskInstance taskInstance) {
            ...
            // 根据master侧任务类型(不是shell、spark那种, 此处是例如Common、Condition、SubTask、SwitchTask等),做相应的初始化操作,为了便于理解,本文采用通用task来处理
            ITaskProcessor taskProcessor = TaskProcessorFactory.getTaskProcessor(taskInstance.getTaskType());
            taskProcessor.init(taskInstance, processInstance);
            ...
            // 补充taskInstance参数,且提交保存至db
            boolean submit = taskProcessor.action(TaskAction.SUBMIT);
            ...
            // 若为通用task类型,则将任务提交到一个待dispatch的task队列taskPriorityQueue中,有消费者TaskPriorityQueueConsumer专门消费该队列
            boolean dispatchSuccess = taskProcessor.action(TaskAction.DISPATCH);
            ...
            // 若为通用task类型,则不做任何处理
            taskProcessor.action(TaskAction.RUN);

            // 增加超时检测,若是超时,会发生告警
            stateWheelExecuteThread.addTask4TimeoutCheck(processInstance, taskInstance);
            // 增加状态检查,当成功或者其他状态时,会进行相应的处理
            stateWheelExecuteThread.addTask4StateCheck(processInstance, taskInstance);
            ...
            return Optional.of(taskInstance);
            ...
    }

TaskPriorityQueueConsumer是一个专门消费上述taskPriorityQueue队列的线程,在程序启动时开始监听taskPriorityQueue队列:

JavaScript 复制代码
public void run() {
        int fetchTaskNum = masterConfig.getDispatchTaskNumber();
        while (!ServerLifeCycleManager.isStopped()) {
            try {
                // 消费需要dispatch的task
                // 为task挑选可用worker节点,然后将task分配至该worker节点
                List<TaskPriority> failedDispatchTasks = this.batchDispatch(fetchTaskNum);
                ...
            } catch (Exception e) {
                TaskMetrics.incTaskDispatchError();
                logger.error("dispatcher task error", e);
            }
        }
    }
JavaScript 复制代码
public List<TaskPriority> batchDispatch(int fetchTaskNum) throws TaskPriorityQueueException, InterruptedException {
        ...
        // 利用多线程并发消费task
        CountDownLatch latch = new CountDownLatch(fetchTaskNum);
        for (int i = 0; i < fetchTaskNum; i++) {
            TaskPriority taskPriority = taskPriorityQueue.poll(Constants.SLEEP_TIME_MILLIS, TimeUnit.MILLISECONDS);
            ...
            consumerThreadPoolExecutor.submit(() -> {
                try {
                    // 为task进行分发操作
                    boolean dispatchResult = this.dispatchTask(taskPriority);
                    ...
                } finally {
                    // make sure the latch countDown
                    latch.countDown();
                }
            });
        }

        latch.await();
        ...
    }
JavaScript 复制代码
protected boolean dispatchTask(TaskPriority taskPriority) {
        ...
        try {
            WorkflowExecuteRunnable workflowExecuteRunnable =
                    processInstanceExecCacheManager.getByProcessInstanceId(taskPriority.getProcessInstanceId());
            ...
            Optional<TaskInstance> taskInstanceOptional =
                    workflowExecuteRunnable.getTaskInstance(taskPriority.getTaskId());
            ...
            TaskInstance taskInstance = taskInstanceOptional.get();
            TaskExecutionContext context = taskPriority.getTaskExecutionContext();
            ExecutionContext executionContext =
                    new ExecutionContext(toCommand(context), ExecutorType.WORKER, context.getWorkerGroup(),
                            taskInstance);
            ...
            // 挑选可用worker节点,然后将task分配至该worker节点
            result = dispatcher.dispatch(executionContext);
            ...
        } catch (RuntimeException | ExecuteException e) {
            logger.error("Master dispatch task to worker error, taskPriority: {}", taskPriority, e);
        }
        return result;
    }

具体的分发操作:

JavaScript 复制代码
public Boolean dispatch(final ExecutionContext context) throws ExecuteException {
         ...
        // host select
        // 根据配置的选择器,筛选符合要求的worker节点信息
        Host host = hostManager.select(context);
        ...
        context.setHost(host);
        ...
        // 将task信息通过RPC发送给挑选的worker节点,要是发送失败,则往其他可用的worker节点发送
        return executorManager.execute(context);
        ...
    }

1.5 事件执行服务:

  • 描述:主要负责工作流实例的事件队列的轮询,因为工作流在执行过程中会不断产生事件,如工作流提交失败、任务状态变更等,下面方法就是处理产生的的相关事件。
  • 代码入口:org.apache.dolphinscheduler.server.master.runner.EventExecuteService#run
JavaScript 复制代码
public void run() {
        while (!ServerLifeCycleManager.isStopped()) {
            try {
                // 处理工作流执行线程的相关事件,最终会触发WorkflowExecuteRunnable#handleEvents方法
                workflowEventHandler();
                // 处理流式任务执行线程的相关事件
                streamTaskEventHandler();
                TimeUnit.MILLISECONDS.sleep(Constants.SLEEP_TIME_MILLIS_SHORT);
            } ...
        }
    }

工作流和实时任务的事件处理逻辑基本一致,下述只描述工作流的处理过程:

JavaScript 复制代码
public void handleEvents() {
        ...
        StateEvent stateEvent = null;
        while (!this.stateEvents.isEmpty()) {
            try {
                stateEvent = this.stateEvents.peek();
                ...
                StateEventHandler stateEventHandler =
                        StateEventHandlerManager.getStateEventHandler(stateEvent.getType())
                                .orElseThrow(() -> new StateEventHandleError(
                                        "Cannot find handler for the given state event"));
                logger.info("Begin to handle state event, {}", stateEvent);
                // 根据不同事件处理器做不同的处理逻辑
                if (stateEventHandler.handleStateEvent(this, stateEvent)) {
                    this.stateEvents.remove(stateEvent);
                }
            } ...
        }
    }

下面以工作流提交失败为例:

JavaScript 复制代码
public boolean handleStateEvent(WorkflowExecuteRunnable workflowExecuteRunnable,
                                    StateEvent stateEvent) throws StateEventHandleException {
        WorkflowStateEvent workflowStateEvent = (WorkflowStateEvent) stateEvent;
        ProcessInstance processInstance = workflowExecuteRunnable.getProcessInstance();
        measureProcessState(workflowStateEvent);
        log.info(
                "Handle workflow instance submit fail state event, the current workflow instance state {} will be changed to {}",
                processInstance.getState(), workflowStateEvent.getStatus());
        // 将实例状态改为FAILURE后入库
        workflowExecuteRunnable.updateProcessInstanceState(workflowStateEvent);
        workflowExecuteRunnable.endProcess();
        return true;
    }

1.6 容错机制:

  • 描述:主要负责Master容错和Worker容错的相关逻辑。
  • 代码入口:org.apache.dolphinscheduler.server.master.service.MasterFailoverService#checkMasterFailover
JavaScript 复制代码
public void checkMasterFailover() {
                // 获取需要容错的master节点
        List<String> needFailoverMasterHosts = processService.queryNeedFailoverProcessInstanceHost()
                .stream()
                // failover myself || dead server
                // 自身或者发生已经灭亡的master
                .filter(host -> localAddress.equals(host) || !registryClient.checkNodeExists(host, NodeType.MASTER))
                .distinct()
                .collect(Collectors.toList());
        if (CollectionUtils.isEmpty(needFailoverMasterHosts)) {
            return;
        }
         ...
        for (String needFailoverMasterHost : needFailoverMasterHosts) {
            failoverMaster(needFailoverMasterHost);
        }
    }
JavaScript 复制代码
private void doFailoverMaster(@NonNull String masterHost) {
        ...
        // 从注册中心获取master的启动时间
        Optional<Date> masterStartupTimeOptional = getServerStartupTime(registryClient.getServerList(NodeType.MASTER),
                masterHost);
        // 从获取与当前master的需要容错的工作路实例(主要根据需要容错的状态去筛选,如:SUBMITTED_SUCCESS、RUNNING_EXECUTION)
        List<ProcessInstance> needFailoverProcessInstanceList = processService.queryNeedFailoverProcessInstances(
                masterHost);
        ...
        for (ProcessInstance processInstance : needFailoverProcessInstanceList) {
                ...
                // 判断该实例是否需要容错处理,判断逻辑例如:
                // 1、其他已经灭亡的master还未重新启动,此时需要进行容错
                // 2、若工作流实例的启动时间比master的启动时间早,说明master重启过,此时需要容错
                // ...
                if (!checkProcessInstanceNeedFailover(masterStartupTimeOptional, processInstance)) {
                    LOGGER.info("WorkflowInstance doesn't need to failover");
                    continue;
                }
                List<TaskInstance> taskInstanceList =...
                for (TaskInstance taskInstance : taskInstanceList) {
                    ...
                        if (!checkTaskInstanceNeedFailover(taskInstance)) {
                            LOGGER.info("The taskInstance doesn't need to failover");
                            continue;
                        }
                        // 对于worker侧的任务,需要进行kill处理,同时将任务实例状态标记为NEED_FAULT_TOLERANCE
                        failoverTaskInstance(processInstance, taskInstance);
                    ...
                }
                ProcessInstanceMetrics.incProcessInstanceByState("failover");
                // updateProcessInstance host is null to mark this processInstance has been failover
                // and insert a failover command
                processInstance.setHost(Constants.NULL);
                // 生成需要容错的command入库,待master调度进行扫描
                processService.processNeedFailoverProcessInstances(processInstance);
            ...
        }
        
    }

结语

以上是笔者对 Apache DolphinScheduler 3.1.9 版本特性与架构的初步理解,基于个人学习与实践整理而成,后续还会输出 Worker 启动流程以及 Master 与 Worker 的交互流程相关文章。由于水平有限,文中难免存在理解偏差或疏漏之处,恳请各位读者不吝指正。如有不同见解,欢迎交流讨论,共同进步。

相关推荐
代码匠心1 天前
从零开始学Flink:数据转换的艺术
java·大数据·flink
在狂风暴雨中奔跑4 天前
厌倦了复杂的编译?一键集成 AeroFFmpeg,让Android音视频开发更简单!
ffmpeg·开源
武子康4 天前
大数据-102 Spark Streaming 与 Kafka 集成全解析:Receiver 与 Direct 两种方式详解 附代码案例
大数据·后端·spark
杨杨杨大侠4 天前
Atlas Mapper 案例 03:企业级订单实体设计文档
java·开源·github
杨杨杨大侠4 天前
手把手教你写 httpclient 框架(二)- 核心注解系统设计与实现
java·开源·github
FreeCode4 天前
StarRocks表设计之数据分布策略
大数据
FreeCode4 天前
StarRocks表设计之表类型的选择
大数据
FIT2CLOUD飞致云5 天前
操作教程|使用Cursor工具连接JumpServer资产
运维·开源
isfox5 天前
Hadoop 1.x 与 2.x 版本对比:架构演进与核心差异解析
大数据