大数据-106 Spark Graph X案例:1图计算、2连通图算法、3寻找相同用户 高效分区、负载均衡与迭代优化

点一下关注吧!!!非常感谢!!持续更新!!!

🚀 AI篇持续更新中!(长期更新)

AI炼丹日志-31- 千呼万唤始出来 GPT-5 发布!"快的模型 + 深度思考模型 + 实时路由",持续打造实用AI工具指南!📐🤖

💻 Java篇正式开启!(300篇)

目前2025年09月22日更新到: Java-130 深入浅出 MySQL MyCat 深入解析 核心配置文件 server.xml 使用与优化 MyBatis 已完结,Spring 已完结,Nginx已完结,Tomcat已完结,分布式服务正在更新!深入浅出助你打牢基础!

📊 大数据板块已完成多项干货更新(300篇):

包括 Hadoop、Hive、Kafka、Flink、ClickHouse、Elasticsearch 等二十余项核心组件,覆盖离线+实时数仓全栈! 大数据-278 Spark MLib - 基础介绍 机器学习算法 梯度提升树 GBDT案例 详解

章节内容

上节完成了如下的内容:

  • Spark Graph X
  • 基本概述
  • 架构基础
  • 概念详解
  • 核心数据结构

编写 Spark GraphX 程序注意的事情

数据分区与负载均衡

1. 分区策略的重要性

在 GraphX 分布式图计算框架中,数据分区是性能优化的关键环节。合理的数据分区策略能够:

  • 减少节点间的网络通信开销
  • 提高计算资源的利用率
  • 降低数据倾斜带来的性能影响
  • 优化迭代计算过程中的数据交换

2. 常见分区方法

GraphX 提供了多种内置分区策略:

2.1 边分区 (EdgePartition)

这是 GraphX 的默认分区方式,特点包括:

  • 基于边的哈希值进行分区
  • 每个分区包含完整的顶点信息
  • 实现简单但可能导致数据倾斜
2.2 顶点分区 (VertexPartition)
  • 基于顶点 ID 进行分区
  • 适合顶点度分布不均匀的图
  • 需要配合 2D 分区策略使用
2.3 2D 分区
  • 同时考虑边和顶点的分布
  • 将顶点和边都划分到不同的分区中
  • 显著减少计算过程中的通信量

3. 负载均衡优化技巧

针对不同场景的优化建议:

3.1 预处理阶段
  • 使用 graph.partitionBy() 方法显式指定分区策略
  • 对于社交网络图,推荐使用 PartitionStrategy.EdgePartition2D
  • 对于二分图,考虑使用 PartitionStrategy.RandomVertexCut
3.2 运行时监控
scala 复制代码
// 检查分区情况示例
val partitions = graph.edges.partitions.size
println(s"当前分区数: $partitions")

// 检查各分区数据量
graph.edges.mapPartitions(iter => Iterator(iter.size)).collect()
3.3 应对数据倾斜

当出现数据倾斜时,可以:

  1. 使用 repartition() 方法重新分配数据
  2. 自定义分区器实现更均衡的分布
  3. 对高度数顶点采用特殊处理策略

4. 实际应用案例

在 PageRank 算法实现中:

  • 采用 2D 分区策略可以减少约 30% 的网络传输
  • 迭代计算时每个分区的负载更加均衡
  • 整体计算时间可缩短 20-40%

5. 高级分区策略

对于特殊场景,还可以考虑:

  • 基于社区发现的分区方法
  • 动态调整分区策略
  • 混合分区方案(如核心-边缘分区)

处理大规模数据时的内存管理

GraphX 会对顶点和边的数据进行分区和缓存,但在处理大规模图数据时,内存管理尤为重要。需要注意内存使用情况,合理配置 Spark 的内存参数,避免内存溢出或垃圾回收频繁的问题。

迭代计算的收敛条件

许多图算法(如 PageRank)是基于迭代计算的,因此要合理设置收敛条件(例如迭代次数或结果变化阈值)。过多的迭代会浪费计算资源,过少的迭代可能导致结果不准确。

图的变换和属性操作

在对图进行操作时,特别是更新顶点和边的属性时,要确保变换操作不会导致数据不一致或图结构的破坏。使用 mapVertices、mapEdges 等操作时,要谨慎处理每个顶点和边的属性。

错误处理与调试

在编写分布式程序时,错误处理和调试尤为重要。GraphX 的操作涉及复杂的图结构,调试时应充分利用 Spark 的日志和错误信息,使用小规模数据集进行初步验证,逐步扩展到大规模数据。

数据存储与序列化

GraphX 在处理大规模图数据时,可能需要将数据保存到外部存储中(如 HDFS)。要注意选择合适的数据格式和序列化方式,以保证数据读写的高效性和可靠性。

扩展性与性能优化

在开发 GraphX 应用时,考虑到未来可能的扩展需求,程序设计应具有一定的扩展性。同时,针对性能的优化也是关键,要通过测试和调整参数来找到最佳的执行配置。

编写 Spark GraphX 程序

以下是编写 Spark GraphX 程序的主要步骤:

构建顶点和边 RDD

顶点和边是构建图的基本元素。我们可以通过 RDD 来定义这些元素

scala 复制代码
// 顶点RDD (VertexId, 属性)
val vertices: RDD[(VertexId, String)] = sc.parallelize(Array(
  (1L, "Alice"), 
  (2L, "Bob"), 
  (3L, "Charlie"), 
  (4L, "David")
))

// 边RDD (源顶点ID, 目标顶点ID, 属性)
val edges: RDD[Edge[Int]] = sc.parallelize(Array(
  Edge(1L, 2L, 1), 
  Edge(2L, 3L, 1), 
  Edge(3L, 4L, 1), 
  Edge(4L, 1L, 1)
))

构建图 (Graph)

使用顶点和边的 RDD 来构建图。

scala 复制代码
val graph = Graph(vertices, edges)

进行图操作或算法计算

你可以对图进行各种操作或使用图算法库进行计算。下面的示例是计算 PageRank。

scala 复制代码
val ranks = graph.pageRank(0.01).vertices

收集和处理结果

通过 collect 或 saveAsTextFile 等方法获取和处理计算结果。

scala 复制代码
ranks.collect().foreach { case (id, rank) => 
  println(s"Vertex $id has rank: $rank") 
}

关闭 SparkContext

在程序结束时,关闭 SparkContext 以释放资源。

scala 复制代码
sc.stop()

导入依赖

xml 复制代码
<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-graphx_2.12</artifactId>
  <version>${spark.version}</version>
</dependency>

案例一:图的基本计算

编写代码

scala 复制代码
package icu.wzk
object GraphExample1 {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("GraphExample1")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    // 初始化数据
    // 定义定点(Long,info)
    val vertexArray: Array[(VertexId, (String, Int))] = Array(
      (1L, ("Alice", 28)),
      (2L, ("Bob", 27)),
      (3L, ("Charlie", 65)),
      (4L, ("David", 42)),
      (5L, ("Ed", 55)),
      (6L, ("Fran", 50))
    )

    // 定义边(Long,Long,attr)
    val edgeArray: Array[Edge[Int]] = Array(
      Edge(2L, 1L, 7),
      Edge(2L, 4L, 2),
      Edge(3L, 2L, 4),
      Edge(3L, 6L, 3),
      Edge(4L, 1L, 1),
      Edge(5L, 2L, 2),
      Edge(5L, 3L, 8),
      Edge(5L, 6L, 3),
    )

    // 构造vertexRDD和edgeRDD
    val vertexRDD: RDD[(Long, (String, Int))] = sc.makeRDD(vertexArray)
    val edgeRDD: RDD[Edge[Int]] = sc.makeRDD(edgeArray)

    // 构造图Graph[VD,ED]
    val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

    // 属性操作实例
    // 找出图中年龄大于30的顶点
    graph.vertices
      .filter {
        case (_, (_, age)) => age > 30
      }
      .foreach(println)

    // 找出图中属性大于5的边
    graph.edges
      .filter {
        edge => edge.attr > 5
      }
      .foreach(println)

    // 列出边属性 > 5 的triplets
    graph.triplets
      .filter(t => t.attr > 5)
      .foreach(println)

    // degrees操作
    // 找出图中最大的出度、入度、度数
    println("==========outDegrees=============")
    graph.outDegrees.foreach(println)
    val outDegrees: (VertexId, Int) = graph.outDegrees
      .reduce {
        (x, y) => if (x._2 > y._2) x else y
      }
    println(s"Out degree: ${outDegrees}")

    println("==========inDegrees=============")
    graph.inDegrees.foreach(println)
    val inDegrees: (VertexId, Int) = graph.inDegrees
      .reduce {
        (x, y) => if (x._2 > y._2) x else y
      }
    println(s"In degree: ${inDegrees}")

    // 转换操作
    // 顶点的转换操作 所有人年龄+10岁
    graph.mapVertices {
      case (id, (name, age)) => (id, (name, age + 10))
    }
      .vertices
      .foreach(println)

    // 边的转换操作 边的属性 * 2
    graph.mapEdges(e => e.attr * 2)
      .edges
      .foreach(println)

    // 结构操作
    // 顶点年龄 > 30的子图
    val subGraph: Graph[(String, Int), Int] = graph.subgraph(vpred = (id, vd) => vd._2 >= 30)
    println("==========SubGraph=============")
    subGraph.vertices.foreach(println)
    subGraph.edges.foreach(println)

    // 连接操作
    println("============连接操作==============")
    // 创建一个新图 顶点VD的数据类型 User,并从Graph做类型转换
    val initialUserGraph: Graph[User, Int] = graph.mapVertices {
      case (_, (name, age)) => User(name, age, 0, 0)
    }
    // initialUserGraph 与 inDegree outDegree 进行 JOIN 修改 inDeg outDeg
    var userGraph: Graph[User, Int] = initialUserGraph
      .outerJoinVertices(initialUserGraph.inDegrees) {
        case (id, u, inDegOut) => User(u.name, u.age, inDegOut.getOrElse(0), u.outDeg)
      }
      .outerJoinVertices(initialUserGraph.outDegrees) {
        case (id, u, outDegOut) => User(u.name, u.age, u.inDeg, outDegOut.getOrElse(0))
      }

    userGraph.vertices.foreach(println)

    // 找到 出度=入度 的人员
    userGraph.vertices
      .filter {
      case (id, u) => u.inDeg == u.outDeg
    }
      .foreach(println)

    // 聚合操作
    // 找到5到各顶点的最短距离
    // 定义源点
    val sourceId: VertexId = 5L
    val initialGraph: Graph[Double, Int] = graph
      .mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
    val sssp: Graph[Double, Int] = initialGraph.pregel(Double.PositiveInfinity)(
      // 两个消息来的时候,取它们当中路径的最小值
      (id, dist, newDist) => math.min(dist, newDist),
      // Send Message 函数
      // 比较 triplet.srcAttr + triplet.attr 和 triplet.dstAttr
      // 如果小于,则发送消息到目的顶点
      triplet => {
        // 计算权重
        if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
          Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
        } else {
          Iterator.empty
        }
      },
      // mergeMsg
      (a, b) => Math.min(a, b)
    )

    println("找到5到各个顶点的最短距离")
    println(sssp.vertices.collect.mkString("\n"))

    sc.stop()

  }
}

case class User(name: String, age: Int, inDeg: Int, outDeg: Int)

运行结果

运行截图如下:

Pregel API

图本身是递归数据结构,顶点的属性依赖于它们的邻居的属性,这些邻居的属性又依赖于自己的邻居的属性。所以需要重要的算法都是迭代的重新计算每个顶点的属性,直到满足某个确定的条件。 一系列的图并发抽象被提出来用来表达这些迭代算法。 GraphX公开了一个类似Pregel的操作

  • vprog:用户定义的顶点运行程序,它所用每一个顶点,负责接收进来的信息,并计算新的顶点值
  • sendMsg:发送消息
  • mergeMsg:合并消息

案例二:连通图算法

给定数据文件,找到存在的连通体

数据内容

自己生成一些即可:

shell 复制代码
1 2
1 3
2 4
3 4
4 5
5 6

编写代码

scala 复制代码
package icu.wzk
object GraphExample2 {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("GraphExample2")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    // 从数据文件中加载 生成图
    val graph: Graph[Int, Int] = GraphLoader.edgeListFile(sc, "graph.txt")
    graph.vertices.foreach(println)
    graph.edges.foreach(println)
    // 生成连通图
    graph.connectedComponents()
      .vertices
      .sortBy(_._2)
      .foreach(println)

    // 关闭 SparkContext
    sc.stop()
  }
}

运行结果

运行截图如下所示:

案例三:寻找相同的用户,合并信息

需求明确

假设:

  • 假设五个不同信息可以作为用户标识,分别:1X,2X,3X,4X,5X
  • 每次可以选择使用若干为字段作为标识
  • 部分标识可能发生变化,如 12变为13 或 24变为25

根据以上规则,判断以下标识是否代表同一用户:

  • 11-21-32、12-22-33(X)
  • 11-21-32、11-21-52(OK)
  • 21-32、11-21-33(OK)
  • 11-21-32、32-48(OK)

问题:在以下数据中,找到同一个用户,合并相同用户的数据

  • 对于用户标识(id):合并后去重
  • 对于用户的信息:key相同,合并权重

编写代码

scala 复制代码
package icu.wzk
object GraphExample3 {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("GraphExample3")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val dataRDD: RDD[(List[Long], List[(String, Double)])] = sc.makeRDD(
      List(
        (List(11L, 21L, 31L), List("kw$北京" -> 1.0, "kw$上海" -> 1.0, "area$中关村" -> 1.0)),
        (List(21L, 32L, 41L), List("kw$上海" -> 1.0, "kw$天津" -> 1.0, "area$回龙观" -> 1.0)),
        (List(41L), List("kw$天津" -> 1.0, "area$中关村" -> 1.0)),
        (List(12L, 22L, 33L), List("kw$大数据" -> 1.0, "kw$spark" -> 1.0, "area$西二旗" -> 1.0)),
        (List(22L, 34L, 44L), List("kw$spark" -> 1.0, "area$五道口" -> 1.0)),
        (List(33L, 53L), List("kw$hive" -> 1.0, "kw$spark" -> 1.0, "area$西二旗" -> 1.0))
      )
    )

    // 1 将标识信息中的每一个元素抽取出来,作为ID
    // 备注1 这里使用了 flatMap 将元素压平
    // 备注2 这里丢掉了标签信息,因为这个RDD主要用于构造顶点、边
    // 备注3 顶点、边的数据要求Long,这个程序修改后才能用在我们的程序中
    val dotRDD: RDD[(VertexId, VertexId)] = dataRDD.flatMap {
      case (allids, _) => allids.map(id => (id, allids.mkString.hashCode.toLong))
    }

    // 2 定义顶点
    val vertexesRDD: RDD[(VertexId, String)] = dotRDD.map {
      case (id, _) => (id, "")
    }
    // 3 定义边(id: 单个标识信息:ids:全部的标识信息)
    val edgesRDD: RDD[Edge[Int]] = dotRDD.map {
      case (id, ids) => Edge(id, ids, 0)
    }
    // 4 生成图
    val graph = Graph(vertexesRDD, edgesRDD)
    // 5 找到强连通体
    val connectRDD: VertexRDD[VertexId] = graph.connectedComponents().vertices;
    // 6 定义中心点的数据
    val centerVertexRDD: RDD[(VertexId, (List[VertexId], List[(String, Double)]))] = dataRDD.map {
      case (allIds, tags) => (allIds.mkString.hashCode.toLong, (allIds, tags))
    }
    // 7 步骤5、6的数据做join 获取需要合并的数据
    val allInfoRDD = connectRDD.join(centerVertexRDD).map {
      case (_, (id2, (allIds, tags))) => (id2, (allIds, tags))
    }
    // 8 数据聚合(将同一个用户的标识、标签放在一起)
    val mergeInfoRDD: RDD[(VertexId, (List[VertexId], List[(String, Double)]))] = allInfoRDD
      .reduceByKey {
        case ((bufferList, bufferMap), (allIds, tags)) =>
          val newList = bufferList ++ allIds

          // map 合并
          val newMap = bufferMap ++ tags
          (newList, newMap)
      }

    // 9 数据合并(allIds去重,tags合并权重)
    val resultRDD: RDD[(List[VertexId], Map[String, Double])] = mergeInfoRDD.map {
      case (key, (allIds, tags)) =>
        val newIds = allIds.distinct
        val newTags = tags.groupBy(x => x._1).mapValues(lst => lst.map(x => x._2).sum)
        (newIds, newTags)
    }

    resultRDD.foreach(println)

    sc.stop()
  }

}

运行结果

运行的截图如下图:

相关推荐
小羊在睡觉3 小时前
Go语言爬虫:爬虫入门
数据库·后端·爬虫·golang·go
qyz_hr3 小时前
国企人力成本管控:红海云eHR系统如何重构大型国有企业编制与预算控制体系
大数据·人工智能·重构
golang学习记3 小时前
速度提升100倍!Python新一代包管理器 uv 详解:比 pip 快 10-100 倍,比 Conda 更轻量!
后端
PFinal社区_南丞3 小时前
Go-testing-synctest-深度解析与实战指南
后端·go
凯哥19703 小时前
Vue 3 + Supabase + TypeScript 完整开发实践标准
后端
知其然亦知其所以然3 小时前
MySQL 社招必考题:如何优化 UNION 查询?
后端·mysql·面试
vker3 小时前
第 4 天:建造者模式(Builder Pattern)—— 创建型模式
java·后端·设计模式
大任视点4 小时前
科技赋能噪声防控,守护职业安全健康
大数据·人工智能·算法