9.27 深度学习9

​​1. 深度学习

​​数据准备​​:项目使用的数据集通常以N-D数组(NumPy数组)的形式保存。数据需要被转换为Tensor(张量)格式以便在GPU上高效运行。

​​模型训练​​:通过定义18层卷积层和2个全连接层的网络结构,对模型进行训练。训练过程中使用交叉熵损失函数和SGD(随机梯度下降)优化器。通过反向传播寻找损失函数的最小值,并利用测试集上的损失值来筛选出最优模型。

​​推理过程​​:输入图像,模型进行前向传播输出各类别对应的置信度值。通过选取置信度最高的那个值及其对应的类别索引,来确定模型对该图像的最终分类。

​​准确率计算​​:通过遍历测试集,对每一张图像进行预测;再统计所有预测正确的数量,除以样本总数,得出模型在测试集上的准确率。

​​2. 关键技术细节探讨​​

​​版本还原​​:提到将仅满足语义注意力需求的图像统一变换为[0,1]范围,需要进行反规范化处理。

​​内存优化​​:提出了使用with语句(上下文管理器)和in-place操作来避免不必要的数据保存,这有助于释放内存并提升计算速度,特别是其内部隐含着boolean类型的求和技巧,无需额外创建中间变量。

​​3. 模型各类别准确率评估与提升策略​​

介绍了如何计算模型在不同类别上的具体准确率,以判断其好坏平衡性,初步发现猫类准确率为45%,最高为车类的82%。

讨论了准确率偏低的原因可能在于特定类别数据不足或数据增强不佳。

明确了针对此案例的优化方向主要在于调整网络结构,而非大规模修改已有数据集。

​​4. 全局平均池化技术详解​​

​​概念​​:全局平均池化(GlobalAverage Pooling)是指池化核的大小与输入特征图的大小完全相同,从而在整个特征图上取一次平均值。

​​核心作用​​:该技术可以大幅减少模型的参数量,有效缓解过拟合风险。在案例中,它被用来替代传统的全连接层,以简化网络结构。

​​关键注意事项​​:全局平均池化应在网络中后期使用,即在网络提取了足够层次的特征(包括底层和高层特征)之后,才能进行。过早使用会导致重要特征信息丢失。

​​5. 卷积层原理回顾​​

​​基础认知​​:一个卷积操作会产生一组(N组)输出通道,每组通道对应一个独立的卷积核。在处理彩色图像时,一个标准的卷积核默认是深度为3的(如5x5x3),因为它需要分别与红色、绿色、蓝色三个通道的像素值进行运算和累加。

​​"两个卷积核"误解澄清​​:并非对一次卷积结果应用第二个卷积核;而是基于原始输入,一次性使用多个(如6个)独立的卷积核进行平行的卷积运算,最后将所有结果叠加形成新通道。

学习全局平均池化技术后,尝试将其应用于自己的网络架构中,以评估是否能够减少参数量并获得更好的模型表现。

探索仅在最后一层使用一个合适的卷积核个数来直接输出目标类别数,从而完全移除后续全连接层的可能性,以简化模型。

相关推荐
catchadmin8 小时前
Laravel AI SDK 正式发布
人工智能·php·laravel
哈__8 小时前
CANN优化GAN生成对抗网络推理:判别器加速与生成质量平衡
人工智能·神经网络·生成对抗网络
方见华Richard8 小时前
世毫九实验室技术优势拆解与对比分析(2026)
人工智能·交互·学习方法·原型模式·空间计算
梵得儿SHI8 小时前
(第十篇)Spring AI 核心技术攻坚全梳理:企业级能力矩阵 + 四大技术栈攻坚 + 性能优化 Checklist + 实战项目预告
java·人工智能·spring·rag·企业级ai应用·springai技术体系·多模态和安全防护
chian-ocean8 小时前
深入 CANN 生态:使用 `modelzoo-samples` 快速部署视觉模型
人工智能
勾股导航8 小时前
Windows安装GPU环境
人工智能·windows·gnu
心疼你的一切8 小时前
三维创世:CANN加速的实时3D内容生成
数据仓库·深度学习·3d·aigc·cann
小羊不会打字8 小时前
探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
哈__8 小时前
CANN加速多模态融合推理:跨模态对齐与特征交互优化
人工智能·交互
红迅低代码平台(redxun)8 小时前
构建企业“第二大脑“:AI低代码平台如何打造智能知识中枢?
人工智能·低代码·ai agent·ai开发平台·智能体开发平台·红迅软件