十一、Hadoop 三种部署模式对比表 & 组件介绍

一、Hadoop 三种部署模式对比表

对比维度 单机模式(Standalone Mode) 伪分布式模式(Pseudo-Distributed Mode) 完全分布式模式(Fully-Distributed Mode)
硬件依赖 仅需1台普通机器,对硬件配置要求低(普通个人电脑即可) 仅需1台机器,但需一定硬件资源(内存、磁盘需满足多进程运行) 需多台机器组成集群(至少3台,主从节点分离,生产环境需更高配置)
组件运行形式 所有Hadoop组件(NameNode、DataNode、ResourceManager等)都运行在单个Java进程 所有组件以独立进程运行(如NameNode、DataNode各占一个进程),但所有进程都在同一台机器上 不同组件部署在不同机器:主节点(NameNode、ResourceManager)单独部署,从节点(DataNode、NodeManager)分散在多台机器
网络通信 组件间无网络通信,仅在进程内部交互 组件间通过本地网络协议通信(模拟分布式网络交互) 组件间通过集群网络通信(主从节点跨机器交互)
数据存储逻辑 不启用HDFS分布式存储,数据直接存在本地文件系统,无分块/副本机制 启用HDFS,数据按分布式规则分块存储,支持副本配置(通常设为1,避免单机器资源浪费) 启用HDFS,数据分块存储在多个DataNode,副本数可配置(生产环境通常设为3,保证数据可靠性)
核心用途 1. 代码调试(验证Hadoop API语法、逻辑正确性) 2. 新手快速熟悉Hadoop基本命令 1. 学习分布式原理(模拟真实分布式组件交互流程) 2. 开发测试(验证程序在分布式环境下的功能) 3. 小规模数据演示 1. 生产环境大规模数据处理(PB级数据存储与计算) 2. 高并发任务运行(多节点协同提升效率)
搭建复杂度 极低:无需修改复杂配置,安装后即可使用 中等:需配置环境变量、组件通信参数、格式化HDFS等步骤 较高:需配置集群网络、节点间免密登录、主从节点同步、资源分配策略等
性能与扩展性 无分布式性能优势,仅支持小规模数据(MB级) 性能受单机器硬件限制,支持小规模数据(GB级),无扩展性 性能随节点数量提升,支持海量数据(PB级),可通过增加节点扩展存储与计算能力

二、组件介绍

组件名称 核心功能 关键作用
HDFS 分布式文件系统,将大文件分块存储在多台服务器上 为 Hadoop 生态提供高可靠、高吞吐量的分布式数据存储能力,支持海量数据的存储与访问
YARN 资源管理系统,负责集群资源的分配与调度 统一管理集群的计算资源(如 CPU、内存等),为各类应用程序(包括 MapReduce 等)分配资源并进行任务调度,提高集群资源利用率
MapReduce 分布式计算框架,采用"分而治之"思想处理大规模数据 把复杂的大数据计算任务拆分为多个简单的子任务(Map 阶段和 Reduce 阶段),分布到集群各节点并行执行,最后汇总结果,实现高效的分布式计算
相关推荐
心态还需努力呀5 小时前
CANN仓库通信库:分布式训练的梯度压缩技术
分布式·cann
Coder_Boy_8 小时前
基于SpringAI的在线考试系统-相关技术栈(分布式场景下事件机制)
java·spring boot·分布式·ddd
程序员泠零澪回家种桔子11 小时前
分布式事务核心解析与实战方案
分布式
凯子坚持 c12 小时前
CANN 生态中的分布式训练利器:深入 `collective-ops` 项目实现高效多卡协同
分布式
惊讶的猫13 小时前
rabbitmq实践小案例
分布式·rabbitmq
禁默14 小时前
打破集群通信“内存墙”:手把手教你用 CANN SHMEM 重构 AIGC 分布式算子
分布式·重构·aigc
惊讶的猫15 小时前
rabbitmq初步介绍
分布式·rabbitmq
小镇敲码人15 小时前
华为CANN框架中HCCL仓库的全面解析:分布式通信的引擎
分布式·华为
User_芊芊君子16 小时前
【分布式训练】CANN SHMEM跨设备内存通信库:构建高效多机多卡训练的关键组件
分布式·深度学习·神经网络·wpf
酷酷的崽79816 小时前
CANN 开源生态解析(四):`cann-dist-train` —— 构建高效可扩展的分布式训练引擎
分布式·开源