场景:spark.table()的方式读取hudi映射的hive表。
开源组件版本:
spark 2.4.5_2.11
hudi 0.10.0
hive 3.1.0
hadoop 2.8.5
报错代码:
scala
spark.table("dwd.dwd_card_menu_a_1d")
.show(false)
报错日志:
java
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Failed to serialize task 0, not attempting to retry it. Exception during serialization: java.io.NotSerializableException: org.apache.hadoop.fs.Path
Serialization stack:
- object not serializable (class: org.apache.hadoop.fs.Path, value: obs://xxxxx/user/hive/warehouse/dwd.db/dwd_card_menu_a_1d)
- element of array (index: 0)
- array (class [Ljava.lang.Object;, size 1)
- field (class: scala.collection.mutable.WrappedArray$ofRef, name: array, type: class [Ljava.lang.Object;)
- object (class scala.collection.mutable.WrappedArray$ofRef, WrappedArray(obs://xxxxxx/user/hive/warehouse/dwd.db/dwd_card_menu_a_1d))
- writeObject data (class: org.apache.spark.rdd.ParallelCollectionPartition)
- object (class org.apache.spark.rdd.ParallelCollectionPartition, org.apache.spark.rdd.ParallelCollectionPartition@691)
- field (class: org.apache.spark.scheduler.ResultTask, name: partition, type: interface org.apache.spark.Partition)
- object (class org.apache.spark.scheduler.ResultTask, ResultTask(0, 0))
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:990)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:385)
at org.apache.spark.rdd.RDD.collect(RDD.scala:989)
at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:361)
at org.apache.spark.api.java.AbstractJavaRDDLike.collect(JavaRDDLike.scala:45)
at org.apache.hudi.client.common.HoodieSparkEngineContext.map(HoodieSparkEngineContext.java:100)
at org.apache.hudi.metadata.FileSystemBackedTableMetadata.getAllPartitionPaths(FileSystemBackedTableMetadata.java:81)
at org.apache.hudi.common.fs.FSUtils.getAllPartitionPaths(FSUtils.java:291)
org.apache.hadoop.fs.Path 未实现java.io.serializabe。 因为 Hudi-0.10.0 在 Spark 2.4.5 下会把 Path 对象放进 ParallelCollectionRDD 的闭包,而 Path 不可序列化。
解决办法:
很简单,在sparkConf中设置spark的序列化为:KryoSerializer
scala
new SparkConf()
.set("spark.serializer", classOf[KryoSerializer].getName)