Stable Diffusion的U-Net中,交叉注意力机制的QKV

这个说法是不完全正确的,它混淆了Q、K、V的来源。

更准确的说法是:

在典型的文本到图像扩散模型(如Stable Diffusion)的交叉注意力层中:

· Q 来自图像 latent(由U-Net处理的噪声潜变量)

· K 和 V 来自文本嵌入(通过文本编码器如CLIP Text Encoder得到)


详细解释:

在Stable Diffusion的U-Net中,交叉注意力机制的工作流程如下:

  1. Query的来源:

· 来自U-Net当前处理的图像潜变量特征

· 这些特征包含了当前的噪声图像信息

  1. Key和Value的来源:

· 来自文本提示词的嵌入向量

· 这些文本嵌入通过CLIP Text Encoder预先计算得到,并在整个去噪过程中保持不变

  1. 工作原理:

· 图像特征作为Query,去"询问"文本特征
· 通过计算Q和K的相似度,模型学习如何将文本描述与图像区域对齐
· Value提供了基于文本信息的特征更新

数学表示:

在注意力机制中:

\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V

其中:

· Q = W_Q \cdot \text{图像特征}

· K = W_K \cdot \text{文本嵌入}

· V = W_V \cdot \text{文本嵌入}

总结:

正确的说法应该是:Q来自图像/噪声,K和V来自文本。这种设计使得模型能够在去噪过程中,根据文本指导来有选择地关注图像的不同区域。

相关推荐
德迅云安全—珍珍1 天前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
数新网络1 天前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee1 天前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch1 天前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手1 天前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1331 天前
多智能体协作中的通信协议演化
人工智能
基咯咯1 天前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q1 天前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs1 天前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF1 天前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计