大数据Spark(六十六):Transformation转换算子sample、sortBy和sortByKey

文章目录

Transformation转换算子sample、sortBy和sortByKey

一、sample

二、sortBy

三、sortByKey


Transformation转换算子sample、sortBy和sortByKey

一、sample

随机抽样算子,根据传进去的小数按比例进行有放回或者无放回的抽样,常用于数据预览、测试或处理大规模数据时的抽样分析。sample算子函数签名如下:

Scala 复制代码
def sample(
    withReplacement: Boolean,
    fraction: Double,
    seed: Long = Utils.random.nextLong
): RDD[T]
  • withReplacement:布尔值,表示抽样时是否采用有放回的方式。true 表示有放回抽样,即同一个元素可能被多次抽取;false 表示无放回抽样,每个元素最多被抽取一次。
  • fraction:表示抽样比例。对于无放回抽样,fraction 是期望抽取的样本占原始数据集的比例,取值范围为 [0, 1];对于有放回抽样,fraction 表示每个元素被抽取的期望次数,取值应大于等于 0。
  • seed:可选参数,表示随机数生成器的种子,指定种子可以确保每次抽样结果一致,便于调试和测试。

需求:对数据进行有放回抽样。

Java代码

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("sample");
JavaSparkContext sc = new JavaSparkContext(conf);

//sample(withReplacement, fraction, seed), withReplacement表示是否放回,fraction表示采样比例,seed表示随机种子
sc.parallelize(Arrays.asList(1,2,3,4,5,6,7,8,9,10))
        .sample(false,0.5,10)
        .foreach(s -> System.out.println(s));
sc.stop();

Scala代码

Scala 复制代码
val conf = new SparkConf()
  .setMaster("local")
  .setAppName("SampleTest")
val sc = new SparkContext(conf)
//sample(withReplacement, fraction, seed),
//withReplacement表示是否放回,fraction表示抽样的比例,seed表示随机种子
sc.parallelize(1 to 10)
  .sample(false, 0.5,10)
  .foreach(println)
sc.stop()

二、sortBy

sortBy 对任意类型的RDD 中的元素按照指定的键进行排序,需要一个函数来提取排序键,并可以指定升序或降序,以及分区数。函数签名如下:

Scala 复制代码
def sortBy[K](
    f: (T) => K,
    ascending: Boolean = true,
    numPartitions: Int = this.partitions.length
)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
  • f:从 RDD 的元素中提取排序键的函数。
  • ascending:布尔值,表示是否按升序排序,默认为 true。
  • numPartitions:排序后 RDD 的分区数,默认为与原始 RDD 相同。

特别注意:Java API中K,V格式RDD没有sortBy操作。

案例:按照字符串长度降序排序。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("SortByTest");
JavaSparkContext sc = new JavaSparkContext(conf);
sc.parallelize(Arrays.asList("zhangsan", "lisi", "wangwu", "maliu"))
        //sortBy:按照字符串长度进行排序
        .sortBy(new Function<String, Integer>() {
            @Override
            public Integer call(String s) throws Exception {
                return s.length();
            }
        },true,1)
        .foreach(s -> System.out.println(s ));
sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("SortByTest")
val sc = new SparkContext(conf)

//sortBy(f, ascending, numPartitions)
//f表示排序的依据,ascending表示是否升序,numPartitions表示分区数
sc.parallelize(List("zhangsan","lisi","wangwu","maliu"))
  .sortBy(_.length)
  .foreach(println)

sc.stop()

三、sortByKey

sortByKey 专用于对键值对 RDD 的键进行排序,可以指定升序或降序,以及分区数。

案例:按照K,V数据中的key大小降序排序。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("SortByKeyTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaPairRDD<Integer, String> rdd = sc.parallelizePairs(Arrays.asList(
        new Tuple2<Integer,String>(10, "zhangsan"),
        new Tuple2<Integer,String>(20, "lisi"),
        new Tuple2<Integer,String>(30, "wangwu"),
        new Tuple2<Integer,String>(40, "maliu")
));

//sortBy:按照字符串长度进行排序
//按照key进行排序,false降序排序
rdd.sortByKey(false).foreach(new VoidFunction<Tuple2<Integer,String>>() {
    @Override
    public void call(Tuple2<Integer, String> integerStringTuple2) throws Exception {
        System.out.println(integerStringTuple2);
    }
});

sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("SortByKeyTest")
val sc = new SparkContext(conf)

sc.parallelize(List(("a",1),("b",2),("c",3),("d",4)))
  //sortByKey(ascending, numPartitions)
  //ascending表示是否升序,numPartitions表示分区数
  .sortByKey(false)
  .foreach(println)

sc.stop()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
专业开发者1 天前
奇迹由此而生:回望 Wi-Fi® 带来的诸多意外影响
大数据
尔嵘1 天前
git操作
大数据·git·elasticsearch
古德new1 天前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能
金融小师妹1 天前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
ChaITSimpleLove1 天前
基于 .NET Garnet 1.0.91 实现高性能分布式锁(使用 Lua 脚本)
分布式·.net·lua
yumgpkpm1 天前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
鹧鸪云光伏1 天前
如何选择光储一体化方案设计软件
大数据·人工智能·光伏·光储
CES_Asia1 天前
机器人“奥运会”燃动北京——CES Asia 2026全球机器人性能挑战赛与展览定档
大数据·人工智能·机器人
原神启动11 天前
Kafka详解
分布式·kafka
yumgpkpm1 天前
Iceberg在Hadoop集群使用步骤(适配AI大模型)
大数据·hadoop·分布式·华为·zookeeper·开源·cloudera