3B参数差点干翻32B模型,Qwen3 Next 是如何做到的?

之前了解到,Qwen3 Next 通过激活 80B 参数中的 3B 参数,即可实现接近 Qwen3-32B 的效果。

当时就很好奇,到底怎么实现的。

今天,我专门学习了下,一并分享给大家。

激活参数的通俗理解

我们设想一个场景:公司有 80 人,现在来了一个新项目,只需要 3 人即可处理。

Qwen3 Next 的思路就是:挑选 3 人响应这个项目,其他人待命 。而传统大模型则是不管项目需要,每次来项目都把 80 人叫上处理。

大家应该都了解,一个项目并不是人越多越好,当人员超出一定规模时,沟通成本、协调成本会随着人员的增加激增,进而造成项目效率低下。

而大模型中也是一样道理,3B 参数就能处理的任务,使用太大规模参数,只会造成推理成本和推理速度的无效增加。

Qwen3 Next 的激活率低至 3.75%,达到了行业最低。

这个思路其实还有更深的一个思考,3B 激活参数不一定正好达到最优效果,那能否实现动态激活参数?这个后续还得继续研究下。

为什么少参数能够实现大效果

上面的思路理解后,我又想到了下一个问题:为什么原有的稠密模型(3B)达不到激活参数(3B)的效果呢?

这是因为:激活的 3B 参数并不是固定的,而是随着任务不同,根据情况分配的。

80B 的参数池保证了模型知识的广度,动态路由则保证了计算效率 ,这样 Qwen3 Next 就能高效适配各种场景了。

为什么要研究这个方向

速度提升:每秒钟多处理10倍内容

  • 解码速度:4K上下文下,每秒生成3.2个token(传统模型0.8个)
  • 长文本优势:32K以上文本处理时,吞吐量提升10倍(从100 tokens/秒→1000 tokens/秒)
  • 应用场景:实时代码助手响应延迟从2秒→0.5秒

成本暴跌:90%算力费用省下了

  • 训练成本:仅需Qwen3-32B密集模型9.3%的GPU小时
  • 推理成本:每千tokens费用从0.3元→0.18元(降低40%)
  • 硬件门槛:单台4卡GPU服务器即可部署(传统模型需8卡A100)

结语

今天就分享这么多,希望可以帮助大家更好的理解"激活参数"类的模型。

假期快要结束了,好好享受最后的假期吧~

相关推荐
人工智能技术派2 小时前
Whisper推理源码解读
人工智能·语言模型·whisper·语音识别
编码追梦人3 小时前
AI 重塑行业格局:从金融风控到智能制造的深度实践
人工智能·制造
Lululaurel3 小时前
提示工程深度解析:驾驭大语言模型的艺术与科学
人工智能·ai·aigc·提示词
simon_skywalker3 小时前
第7章 n步时序差分 n步时序差分预测
人工智能·算法·强化学习
唐兴通个人3 小时前
清华大学AI领导力AI时代领导力AI变革领导力培训师培训讲师专家唐兴通讲授数字化转型人工智能组织创新实践领导力国央企国有企业金融运营商制造业
人工智能·数据挖掘
云卓SKYDROID4 小时前
无人机定点派送技术要点与运行方式
人工智能·无人机·航电系统·高科技·云卓科技
码界筑梦坊4 小时前
206-基于深度学习的胸部CT肺癌诊断项目的设计与实现
人工智能·python·深度学习·flask·毕业设计
通往曙光的路上4 小时前
国庆回来的css
人工智能·python·tensorflow