3B参数差点干翻32B模型,Qwen3 Next 是如何做到的?

之前了解到,Qwen3 Next 通过激活 80B 参数中的 3B 参数,即可实现接近 Qwen3-32B 的效果。

当时就很好奇,到底怎么实现的。

今天,我专门学习了下,一并分享给大家。

激活参数的通俗理解

我们设想一个场景:公司有 80 人,现在来了一个新项目,只需要 3 人即可处理。

Qwen3 Next 的思路就是:挑选 3 人响应这个项目,其他人待命 。而传统大模型则是不管项目需要,每次来项目都把 80 人叫上处理。

大家应该都了解,一个项目并不是人越多越好,当人员超出一定规模时,沟通成本、协调成本会随着人员的增加激增,进而造成项目效率低下。

而大模型中也是一样道理,3B 参数就能处理的任务,使用太大规模参数,只会造成推理成本和推理速度的无效增加。

Qwen3 Next 的激活率低至 3.75%,达到了行业最低。

这个思路其实还有更深的一个思考,3B 激活参数不一定正好达到最优效果,那能否实现动态激活参数?这个后续还得继续研究下。

为什么少参数能够实现大效果

上面的思路理解后,我又想到了下一个问题:为什么原有的稠密模型(3B)达不到激活参数(3B)的效果呢?

这是因为:激活的 3B 参数并不是固定的,而是随着任务不同,根据情况分配的。

80B 的参数池保证了模型知识的广度,动态路由则保证了计算效率 ,这样 Qwen3 Next 就能高效适配各种场景了。

为什么要研究这个方向

速度提升:每秒钟多处理10倍内容

  • 解码速度:4K上下文下,每秒生成3.2个token(传统模型0.8个)
  • 长文本优势:32K以上文本处理时,吞吐量提升10倍(从100 tokens/秒→1000 tokens/秒)
  • 应用场景:实时代码助手响应延迟从2秒→0.5秒

成本暴跌:90%算力费用省下了

  • 训练成本:仅需Qwen3-32B密集模型9.3%的GPU小时
  • 推理成本:每千tokens费用从0.3元→0.18元(降低40%)
  • 硬件门槛:单台4卡GPU服务器即可部署(传统模型需8卡A100)

结语

今天就分享这么多,希望可以帮助大家更好的理解"激活参数"类的模型。

假期快要结束了,好好享受最后的假期吧~

相关推荐
文火冰糖的硅基工坊13 小时前
[人工智能-大模型-83]:模型层技术 - 前向预测:神经网络是如何产生涌现智能的?背后的本质是什么?
人工智能·深度学习·神经网络
taxunjishu13 小时前
西门子 1500 PLC 依托 Ethernet/ip 转 Modbus RTU联合发那科机器人优化生产流程
人工智能·区块链·工业物联网·工业自动化·总线协议
一介书生-00713 小时前
2025-10-27 Java AI学习路线
java·人工智能·学习
rengang6613 小时前
AI辅助需求分析:AI大模型将自然语言需求转化为技术规格
人工智能·需求分析·ai编程·1024程序员节·ai智能体编程
子不语18013 小时前
深度学习——IDE之Jupyter
人工智能·深度学习·jupyter
AI小云14 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python
格林威14 小时前
紫外工业相机入门介绍和工业检测核心场景
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测
高洁0114 小时前
【无标题】大模型-模型压缩:量化、剪枝、蒸馏、二值化 (2
人工智能·python·深度学习·神经网络·知识图谱
谈思汽车14 小时前
AutoSec Europe 2026 第二届欧洲汽车网络安全与数据安全峰会启动报名!
人工智能
机器之心14 小时前
LSTM之父Jürgen再突破,「赫胥黎-哥德尔机」让AI学会自己进化
人工智能·openai