UCI中Steel Plates Faults不平衡数据集处理(二分类问题,研究Bumps缺陷)
第一步先把数据集格式NNA转换为CSV格式,最后一列为目标列,前面是特征列。本文主要研究Bumps缺陷,如果想研究其他缺陷,只需要替换df_binary = df[feature_cols + ["Bumps"]]这一行代码中 ["Bumps"]]。
python
import pandas as pd
df = pd.read_csv("Faults.NNA",
sep=r"\s+", header=None)
feature_cols = [f"feature_{i+1}" for i in range(27)]
target_cols = ["Pastry", "Z_Scratch", "K_Scatch", "Stains",
"Dirtiness", "Bumps", "Other_Faults"]
df.columns = feature_cols + target_cols
# 选择研究Bumps缺陷
df_binary = df[feature_cols + ["Bumps"]]
df_binary.to_csv("steel_faults_bumps.csv", index=False)
print("已保存为steel_faults_bumps.csv,形状:", df_binary.shape)
print(df_binary.head())