Azure - 尝试创建并使用一下Azure AI Search

1. 简单介绍

我们可以使用Azure AI Search作为向量的存储库,同时Azure AI Search也提供了keyword search, vector search和Hybrid search等功能。在Azure AI Search中有Index,Indexer, Skillset, Scale, Semantic Ranker等概念,具体的内容可以参考微软的mslearn文章

这边将尝试去创建一个Azure AI Search并以Rag的方式使用一下

  1. 在Azure portal 的Azure AI Foundry界面中,选择左侧的AI Search菜单,然后点击Create按钮,
  1. 在Create a search service界面中,选择subscription和pricing tier,同时设定search name,

note, 不同的pricing tier对应不同的capacity,费用也不同的。

  1. 最后在review界面中,点击create按钮,

4)最后创建成功

  1. 在Azure AI Search界面中,点击import data(new)按钮,
  1. 在Choose a data source界面中,选择Azure Blob Storage选项,
  1. 点击RAG选项,如下图所示,
  1. 在Connect to your data 界面中,选择Storage account和Blob container

note, 这边假定已经创建了一个Azure blob storage,用于存放resumes,

  1. 在Vectorize your text界面,选择Azure OpenAI service和embeding model,这边在Authentication type中选择的是API key,
  1. 下面的界面没有设置值,当前这边没有用的OCR等Azure AI Skillset,
  1. 在Advance settings中,选择Enable semantic ranker
  1. 在review and create界面中,点击Create按钮,
  1. 弹出如下界面,表示创建成功了,
  1. 在创建的Azure AI Search index 的 Fields界面中,发现有vector field 产生,
  1. 在Search explorer中,直接点击Search按钮,发现有内容返回

2.3 记录配置信息

创建好Azure AI Search之后,需要记录一下Azure AI Search对应的endpoint和key,

  1. Endpoint信息,

​​​​​​​

  1. key信息,

3. 制作Custom Engine Agent

3.1 创建项目

  1. 假定在VSCode中已经安装了Microsoft 365 Agents Toolkit,以前的名字是Teams Toolkit,
  1. 创建了一个Custom Engine Agent,
  1. 选择 Basic AI Chatbot,
  1. 选择Typescript语言,
  1. 配置Azure Open AI key, endpoint等信息
  1. 最后创建了一个Custom Agent,如下图所示,

7)定制项目并配置Azure AI Search的endpoint, key, index name, embeding model等信息,

3.2 运行项目

  1. 在VSCode的项目中,点击RUN AND DEBUG下拉框,选择Debug in Teams(Desktop)并运行,
  1. 启动项目的过程中会弹出下面的提示窗,点击Continue按钮,
  1. 在弹出的如下Teams App窗口中,点击Add按钮,
  1. 在下面的界面中,点击Open按钮,
  1. 最后输入想提问的问题,bot会通过Azure AI Search的vector search进行内容检索,并将检索结果提供给Azure Open AI作为上下文, 最后返回内容给bot同时bot返回内容给用户,如下图所示,

4. 总结

本文记录了一下创建Azure AI Search并以RAG的方式来使用Azure AI Search的过程。在别的Vector storage中也有和Azure AI Search对应的概念的,比如Qdrant中Collection对应的是AI Search中的Index,Payload对应的是Fields等。不过相对其他的RAG解决方案,Azure AI Search的可拓展性可能比较强一些,支持partion和replicas的两种拓展方式。更加详细的内容,还可以参考微软的mslearn文章​​​​​​​。

本文如果哪里有错误,麻烦告之,谢谢谢谢!

相关推荐
时光追逐者7 小时前
全面的 C#/.NET 图表构建解决方案,助力快速实现图表开发需求!
微软·c#·.net·.net core·图表
渡我白衣8 小时前
C++ 同名全局变量:当符号在链接器中“相遇”
开发语言·c++·人工智能·深度学习·microsoft·语言模型·人机交互
ITHAOGE1519 小时前
下载| Windows 11 ARM版10月官方ISO系统映像 (适合部分笔记本、苹果M系列芯片电脑、树莓派和部分安卓手机平板)
windows·科技·microsoft·电脑
张人玉21 小时前
WPF 控件速查 PDF 笔记(可直接落地版)(带图片)
大数据·microsoft·ui·c#·wpf
FreeBuf_1 天前
微软Copilot被用于窃取OAuth令牌,AI Agent成为攻击者帮凶
人工智能·microsoft·copilot
李少兄1 天前
HTML 表单控件
前端·microsoft·html
北极糊的狐2 天前
用狸窝转换器转换视频后文件变大的问题排查
microsoft·音视频
小宁爱Python2 天前
从入门到实践:LangGraph 构建复杂 AI 工作流的完整指南
人工智能·python·microsoft·django
闲人编程2 天前
自动化文件管理:分类、重命名和备份
python·microsoft·分类·自动化·备份·重命名·自动化文件分类
FreeBuf_3 天前
Microsoft 365 Copilot 提示注入漏洞可导致攻击者窃取敏感数据
microsoft·copilot