【金融】- findpapers:论文搜索与下载工具

金融 - findpapers:论文搜索与下载工具

findpapers:论文搜索与下载工具

复制代码
findpapers search search.json --query "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])" --databases "arxiv,ssrn,repec,econbiz,semanticscholar" --limit-db 40 --verbose

这段代码是一个使用 findpapers工具,在五个专业库中(arxiv,ssrn,repec,econbiz,semanticscholar),进行一定逻辑条件的,学术论文搜索的命令。

其中

复制代码
findpapers search search_broad.json --query "[...]" --databases "arxiv,pubmed" --limit-db 40 --verbose

该命令通过 findpapers工具从"arxiv,ssrn,repec,econbiz,semanticscholar"​数据库中检索符合如下指定关键词组合

复制代码
"[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])"

的学术论文,并将结果保存到 search_broad.json文件中。

参数说明如下:

完成后,有类似如下整理好的搜索结果(以下是单篇备选文献的结果),

复制代码
{
  "databases": [
    "arxiv",
    "ssrn",
    "repec",
    "econbiz",
    "semanticscholar"
  ],
  "limit": null,
  "limit_per_database": 40,
  "number_of_papers": 1,
  "number_of_papers_by_database": {
    "arXiv": 1
  },
  "papers": [
    {
      "abstract": "Knowledge Graphs have emerged as a compelling abstraction for capturing key\nrelationship among the entities of interest to enterprises and for integrating\ndata from heterogeneous sources. JPMorgan Chase (JPMC) is leading this trend by\nleveraging knowledge graphs across the organization for multiple mission\ncritical applications such as risk assessment, fraud detection, investment\nadvice, etc. A core problem in leveraging a knowledge graph is to link mentions\n(e.g., company names) that are encountered in textual sources to entities in\nthe knowledge graph. Although several techniques exist for entity linking, they\nare tuned for entities that exist in Wikipedia, and fail to generalize for the\nentities that are of interest to an enterprise. In this paper, we propose a\nnovel end-to-end neural entity linking model (JEL) that uses minimal context\ninformation and a margin loss to generate entity embeddings, and a Wide & Deep\nLearning model to match character and semantic information respectively. We\nshow that JEL achieves the state-of-the-art performance to link mentions of\ncompany names in financial news with entities in our knowledge graph. We report\non our efforts to deploy this model in the company-wide system to generate\nalerts in response to financial news. The methodology used for JEL is directly\napplicable and usable by other enterprises who need entity linking solutions\nfor data that are unique to their respective situations.",
      "authors": [
        "Wanying Ding",
        "Vinay K. Chaudhri",
        "Naren Chittar",
        "Krishna Konakanchi"
      ],
      "categories": {},
      "citations": null,
      "comments": "8 pages, 4 figures, IAAI-21",
      "databases": [
        "arXiv"
      ],
      "doi": "10.1609/aaai.v35i17.17796",
      "keywords": [],
      "number_of_pages": null,
      "pages": null,
      "publication": null,
      "publication_date": "2024-11-05",
      "selected": true,
      "title": "JEL: Applying End-to-End Neural Entity Linking in JPMorgan Chase",
      "urls": [
        "http://arxiv.org/abs/2411.02695v1",
        "http://arxiv.org/pdf/2411.02695v1",
        "http://dx.doi.org/10.1609/aaai.v35i17.17796"
      ]
    }
  ],
  "processed_at": "2025-10-08 07:39:04",
  "publication_types": null,
  "query": "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])",
  "since": null,
  "until": null
}

搜索完成后只搜到了1篇文献,所以需要放宽一下约束条件(不局限于深度学习,包括机器学习),并限定专业库(更贴合金融量化投资需求的库)

复制代码
findpapers search search_broad.json --query "([Machine Learning] OR [Deep Learning] OR [Knowledge Graph]) AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Finance] OR [Investment])" --databases "arxiv,semanticscholar" --limit-db 40 --since 2020-01-01 --verbose

搜索完成,要执行如下预选精炼:

复制代码
findpapers refine search_broad.json

精炼过程每一篇均要选择是否保留。

结束之后,执行如下代码进行论文下载:

复制代码
findpapers download search_broad.json ./papers_broad --selected --verbose

执行命令后,论文逐步下载,虽然速度较慢(36篇文献的下载耗时约1小时)。

相关推荐
灵雀云3 天前
灵雀云 ACP:金融级云原生平台,实现“安全、稳定、智能”的价值承诺
安全·云原生·金融
weixin_469163694 天前
金融科技项目管理方式在AI加持下发展方向之,需求分析精准化减少业务与技术偏差
人工智能·科技·金融·项目管理·需求管理
八十天环游世界4 天前
金融智能体具体能做什么?应用场景有哪些?
金融
beawan015 天前
天际股份、天赐材料、多氟多、永太科技、联化科技、深圳新星,6家龙头公司研发实力深度数据
科技·金融
中电金信5 天前
2025新加坡金融科技节:看AI驱动的金融转型策略与“中国方案”
大数据·人工智能·金融
2301_780789665 天前
WAF如何应对金融领域的网络威胁和黑客攻击
服务器·网络·安全·web安全·金融
3DVisionary5 天前
蓝光3D扫描仪在汽车模具质量控制中的应用:提升金属与注塑模具的尺寸检测效率
3d·金融·蓝光三维扫描·汽车模具·3d尺寸检测·逆向工程/质量控制·注塑与冶金
Web3VentureView5 天前
Synbo Protocol 受邀出席ETHShanghai 2025,以共识机制重构链上融资生态
金融·web3·去中心化·区块链