【金融】- findpapers:论文搜索与下载工具

金融 - findpapers:论文搜索与下载工具

findpapers:论文搜索与下载工具

复制代码
findpapers search search.json --query "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])" --databases "arxiv,ssrn,repec,econbiz,semanticscholar" --limit-db 40 --verbose

这段代码是一个使用 findpapers工具,在五个专业库中(arxiv,ssrn,repec,econbiz,semanticscholar),进行一定逻辑条件的,学术论文搜索的命令。

其中

复制代码
findpapers search search_broad.json --query "[...]" --databases "arxiv,pubmed" --limit-db 40 --verbose

该命令通过 findpapers工具从"arxiv,ssrn,repec,econbiz,semanticscholar"​数据库中检索符合如下指定关键词组合

复制代码
"[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])"

的学术论文,并将结果保存到 search_broad.json文件中。

参数说明如下:

完成后,有类似如下整理好的搜索结果(以下是单篇备选文献的结果),

复制代码
{
  "databases": [
    "arxiv",
    "ssrn",
    "repec",
    "econbiz",
    "semanticscholar"
  ],
  "limit": null,
  "limit_per_database": 40,
  "number_of_papers": 1,
  "number_of_papers_by_database": {
    "arXiv": 1
  },
  "papers": [
    {
      "abstract": "Knowledge Graphs have emerged as a compelling abstraction for capturing key\nrelationship among the entities of interest to enterprises and for integrating\ndata from heterogeneous sources. JPMorgan Chase (JPMC) is leading this trend by\nleveraging knowledge graphs across the organization for multiple mission\ncritical applications such as risk assessment, fraud detection, investment\nadvice, etc. A core problem in leveraging a knowledge graph is to link mentions\n(e.g., company names) that are encountered in textual sources to entities in\nthe knowledge graph. Although several techniques exist for entity linking, they\nare tuned for entities that exist in Wikipedia, and fail to generalize for the\nentities that are of interest to an enterprise. In this paper, we propose a\nnovel end-to-end neural entity linking model (JEL) that uses minimal context\ninformation and a margin loss to generate entity embeddings, and a Wide & Deep\nLearning model to match character and semantic information respectively. We\nshow that JEL achieves the state-of-the-art performance to link mentions of\ncompany names in financial news with entities in our knowledge graph. We report\non our efforts to deploy this model in the company-wide system to generate\nalerts in response to financial news. The methodology used for JEL is directly\napplicable and usable by other enterprises who need entity linking solutions\nfor data that are unique to their respective situations.",
      "authors": [
        "Wanying Ding",
        "Vinay K. Chaudhri",
        "Naren Chittar",
        "Krishna Konakanchi"
      ],
      "categories": {},
      "citations": null,
      "comments": "8 pages, 4 figures, IAAI-21",
      "databases": [
        "arXiv"
      ],
      "doi": "10.1609/aaai.v35i17.17796",
      "keywords": [],
      "number_of_pages": null,
      "pages": null,
      "publication": null,
      "publication_date": "2024-11-05",
      "selected": true,
      "title": "JEL: Applying End-to-End Neural Entity Linking in JPMorgan Chase",
      "urls": [
        "http://arxiv.org/abs/2411.02695v1",
        "http://arxiv.org/pdf/2411.02695v1",
        "http://dx.doi.org/10.1609/aaai.v35i17.17796"
      ]
    }
  ],
  "processed_at": "2025-10-08 07:39:04",
  "publication_types": null,
  "query": "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])",
  "since": null,
  "until": null
}

搜索完成后只搜到了1篇文献,所以需要放宽一下约束条件(不局限于深度学习,包括机器学习),并限定专业库(更贴合金融量化投资需求的库)

复制代码
findpapers search search_broad.json --query "([Machine Learning] OR [Deep Learning] OR [Knowledge Graph]) AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Finance] OR [Investment])" --databases "arxiv,semanticscholar" --limit-db 40 --since 2020-01-01 --verbose

搜索完成,要执行如下预选精炼:

复制代码
findpapers refine search_broad.json

精炼过程每一篇均要选择是否保留。

结束之后,执行如下代码进行论文下载:

复制代码
findpapers download search_broad.json ./papers_broad --selected --verbose

执行命令后,论文逐步下载,虽然速度较慢(36篇文献的下载耗时约1小时)。

相关推荐
Love__Tay1 天前
【数据分析与可视化】2025年一季度金融业主要行业资产、负债、权益结构与增速对比
金融·excel·pandas·matplotlib
皇族崛起1 天前
金融 - 搭建 图谱挖掘工作流 调研
金融·llm·知识图谱·neo4j·多智能体·findpaper
寰宇视讯3 天前
产业资源+金融赋能!沃飞长空与金石租赁开启深度合作
金融
zzywxc7873 天前
AI 在金融、医疗、教育、制造业等领域都有广泛且深入的应用,以下是这些领域的一些落地案例
人工智能·金融·自动化·prompt·ai编程·xcode
YangYang9YangYan3 天前
金融分析师技能提升路径与学习资源指南
金融·数据分析
weixin_525936333 天前
金融大数据处理与分析
hadoop·python·hdfs·金融·数据分析·spark·matplotlib
皇族崛起4 天前
金融 - neo4j、Graph Data Science 安装
金融·知识图谱·neo4j·信息差·ai赋能
JIngJaneIL7 天前
图书馆自习室|基于SSM的图书馆自习室座位预约小程序设计与实现(源码+数据库+文档)
java·数据库·vue.js·spring boot·论文·毕设·图书馆自习室