【金融】- findpapers:论文搜索与下载工具

金融 - findpapers:论文搜索与下载工具

findpapers:论文搜索与下载工具

复制代码
findpapers search search.json --query "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])" --databases "arxiv,ssrn,repec,econbiz,semanticscholar" --limit-db 40 --verbose

这段代码是一个使用 findpapers工具,在五个专业库中(arxiv,ssrn,repec,econbiz,semanticscholar),进行一定逻辑条件的,学术论文搜索的命令。

其中

复制代码
findpapers search search_broad.json --query "[...]" --databases "arxiv,pubmed" --limit-db 40 --verbose

该命令通过 findpapers工具从"arxiv,ssrn,repec,econbiz,semanticscholar"​数据库中检索符合如下指定关键词组合

复制代码
"[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])"

的学术论文,并将结果保存到 search_broad.json文件中。

参数说明如下:

完成后,有类似如下整理好的搜索结果(以下是单篇备选文献的结果),

复制代码
{
  "databases": [
    "arxiv",
    "ssrn",
    "repec",
    "econbiz",
    "semanticscholar"
  ],
  "limit": null,
  "limit_per_database": 40,
  "number_of_papers": 1,
  "number_of_papers_by_database": {
    "arXiv": 1
  },
  "papers": [
    {
      "abstract": "Knowledge Graphs have emerged as a compelling abstraction for capturing key\nrelationship among the entities of interest to enterprises and for integrating\ndata from heterogeneous sources. JPMorgan Chase (JPMC) is leading this trend by\nleveraging knowledge graphs across the organization for multiple mission\ncritical applications such as risk assessment, fraud detection, investment\nadvice, etc. A core problem in leveraging a knowledge graph is to link mentions\n(e.g., company names) that are encountered in textual sources to entities in\nthe knowledge graph. Although several techniques exist for entity linking, they\nare tuned for entities that exist in Wikipedia, and fail to generalize for the\nentities that are of interest to an enterprise. In this paper, we propose a\nnovel end-to-end neural entity linking model (JEL) that uses minimal context\ninformation and a margin loss to generate entity embeddings, and a Wide & Deep\nLearning model to match character and semantic information respectively. We\nshow that JEL achieves the state-of-the-art performance to link mentions of\ncompany names in financial news with entities in our knowledge graph. We report\non our efforts to deploy this model in the company-wide system to generate\nalerts in response to financial news. The methodology used for JEL is directly\napplicable and usable by other enterprises who need entity linking solutions\nfor data that are unique to their respective situations.",
      "authors": [
        "Wanying Ding",
        "Vinay K. Chaudhri",
        "Naren Chittar",
        "Krishna Konakanchi"
      ],
      "categories": {},
      "citations": null,
      "comments": "8 pages, 4 figures, IAAI-21",
      "databases": [
        "arXiv"
      ],
      "doi": "10.1609/aaai.v35i17.17796",
      "keywords": [],
      "number_of_pages": null,
      "pages": null,
      "publication": null,
      "publication_date": "2024-11-05",
      "selected": true,
      "title": "JEL: Applying End-to-End Neural Entity Linking in JPMorgan Chase",
      "urls": [
        "http://arxiv.org/abs/2411.02695v1",
        "http://arxiv.org/pdf/2411.02695v1",
        "http://dx.doi.org/10.1609/aaai.v35i17.17796"
      ]
    }
  ],
  "processed_at": "2025-10-08 07:39:04",
  "publication_types": null,
  "query": "[Deep Learning] AND [Knowledge Graph] AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Economic Cycle] OR [Business Cycle])",
  "since": null,
  "until": null
}

搜索完成后只搜到了1篇文献,所以需要放宽一下约束条件(不局限于深度学习,包括机器学习),并限定专业库(更贴合金融量化投资需求的库)

复制代码
findpapers search search_broad.json --query "([Machine Learning] OR [Deep Learning] OR [Knowledge Graph]) AND ([Quantitative Investment] OR [Algorithmic Trading] OR [Financial Analysis] OR [Risk Assessment] OR [Finance] OR [Investment])" --databases "arxiv,semanticscholar" --limit-db 40 --since 2020-01-01 --verbose

搜索完成,要执行如下预选精炼:

复制代码
findpapers refine search_broad.json

精炼过程每一篇均要选择是否保留。

结束之后,执行如下代码进行论文下载:

复制代码
findpapers download search_broad.json ./papers_broad --selected --verbose

执行命令后,论文逐步下载,虽然速度较慢(36篇文献的下载耗时约1小时)。

相关推荐
changlianzhifu17 小时前
数字人民币跨境支付:重塑全球贸易结算新格局
金融
P.H. Infinity8 小时前
【QLIB】二、数据层
金融
lpfasd12310 小时前
《21世纪金融资本论:投机资本的新理论》精读导引笔记
人工智能·笔记·金融
电报号dapp11912 小时前
交易所开发:在数字金融的竞技场中构建信任的圣殿
金融·web3·去中心化·区块链·智能合约
代码方舟1 天前
Java后端实战:构建基于天远手机号码归属地核验的金融级风控模块
java·大数据·开发语言·金融
雷焰财经1 天前
宇信科技以金融科技前沿探索 获评《财经》新媒体2025“新奖”——“未来场景定义者”
科技·金融·媒体
DeepFlow 零侵扰全栈可观测1 天前
民生银行云原生业务的 eBPF 可观测性建设实践
运维·开发语言·分布式·云原生·金融·php
Z_Jiang1 天前
金融投资 的 小游戏:海边躺平
经验分享·金融·概率论·程序员创富
dyxal1 天前
BERT模型实战:金融新闻去重系统全解析
人工智能·金融·bert
biyezuopinvip2 天前
结构对称性对氧化铋能带的影响(论文)
毕业设计·论文·毕业论文·文献·答辩ppt·结构对称性·对氧化铋能带的影响