PyTorch & Transformers| Azure

数据迁移

PyTorch和 Transformers 是不同层面的工具,核心区别如下:

  • PyTorch:是一个深度学习框架,类似"建造房子的工具箱",提供张量计算、神经网络搭建、模型训练等基础功能,是实现AI模型的底层工具

  • Transformers:是一个预训练模型库(由Hugging Face开发),类似"已经造好的房屋模块",基于PyTorch/TensorFlow等框架,封装了BERT、GPT等主流预训练模型,能直接用于文本生成、翻译等任务,无需从零造模型。

  • 用PyTorch可以"从零造模型"
  • 而用Transformers能"直接用现成的高级模型"
  • 且后者依赖前者(或其他框架)才能运行。

用一个具体场景(比如文本分类)演示两者的实际用法差异吗?这样能更直观理解它们的配合关系

以"文本分类"(比如判断一句话是正面还是负面评价)为例,通过代码核心逻辑对比两者用法,不涉及复杂细节:

  1. 用PyTorch实现(从零搭模型)

需手动定义网络结构、处理数据,步骤繁琐:

import torch

import torch.nn as nn

1. 手动定义简单神经网络(自己造"房屋框架")

class SimpleNet(nn.Module):

def init(self):

super().init()

self.fc1 = nn.Linear(512, 256) # 全连接层1

self.fc2 = nn.Linear(256, 2) # 输出层(2类:正/负)

def forward(self, x):

x = torch.relu(self.fc1(x))

return self.fc2(x)

2. 手动加载、处理数据(自己准备"建材")

(此处省略几百行:文本转向量、划分训练/测试集、构建数据加载器...)

3. 初始化模型、训练(自己动手"盖房子")

model = SimpleNet()

optimizer = torch.optim.Adam(model.parameters())

(再省略几百行:循环训练、计算损失、反向传播...)

  1. 用Transformers实现(直接用现成模型)

无需定义网络,调用封装好的预训练模型,几行搞定核心逻辑:

from transformers import BertTokenizer, BertForSequenceClassification

1. 加载现成的预训练模型和分词器(直接拿"现成房屋模块")

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # 文本转模型能懂的格式

model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) # 自带分类头

2. 处理数据(工具帮你做,无需手动写)

text = "这个产品超好用!"

inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

3. 直接推理(不用训练也能跑,或少量微调)

with torch.no_grad():

outputs = model(**inputs)

predictions = torch.argmax(outputs.logits, dim=1) # 直接得到分类结果(正/负)

核心差异很明显:

  • PyTorch需要"从0到1造轮子"
  • Transformers则是"直接用调好的轮子跑"
相关推荐
DX_水位流量监测16 小时前
大坝安全监测之渗流渗压位移监测设备技术解析
大数据·运维·服务器·网络·人工智能·安全
昵称已被吞噬~‘(*@﹏@*)’~16 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
Yeats_Liao16 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
老周聊架构16 小时前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测
AKAMAI16 小时前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·测试
寂寞恋上夜17 小时前
异步任务怎么设计:轮询/WebSocket/回调(附PRD写法)
网络·人工智能·websocket·网络协议·markdown转xmind·deepseek思维导图
Deepoch17 小时前
赋能未来:Deepoc具身模型开发板如何成为机器人创新的“基石”
人工智能·机器人·开发板·具身模型·deepoc
格林威17 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词17 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek