Deep Dive into LLMs like ChatGPT 学习笔记

视频链接https://www.youtube.com/watch?v=7xTGNNLPyMI

要点:虽然名字是deep dive,但是属于帮助入门理解大模型。

预训练的data: FineWeb, focus on 英语。15-trillion tokens, 44TB size

训练:0-8000(大概的数) tokens序列作为input(context) ,神经网络预测下一个token的比例。

神经网络的weight初始是随机的。correct answer是label,可以tune网络,让正确结果的probability更高,这就是训练。

神经网络的结构参数可视化:https://bbycroft.net/llm

inference: to generate data, just predict one token at a time. 即使输入一个与训练data里一模一样的sequence,预测结果不一定与training data一样,是inspired by the training data。

推理:just talking to the model。

举例 GPT-2

general propose transformer

1.6 billion 参数

最大1024 token

用100 billion token训练

现在训练的成本变低了:dataset更好了,硬件更好了,软件优化好了。

8XH100 node,需要24hours。

每个step拿1million token去训练。loss:low loss is good

举例 Llama3 by meta 2024

405 billion parameters on 15 trillion tokens

Base模型,internet document simulator,只把你的输入当作prefix。模型的输出是随机。Llama模型有memory,比如输入某个wiki的句子,输出会和wiki剩下的内容一致。模型能记住,通过训练。base模型训练的数据集截至到2023年底。

模型也有in-context learning能力,可以学习prompt的pattern,虽然base模型没办法直接回答你的问题,但是你可以在prompt中模拟人类与AI的对话,在prompt最后问模型你真正想问的问题,那么模型会学习到"回答问题"的pattern。

note:base模型是不是就像这个世界知识的巨大zip文件。

----------------------base模型---------------------

Post-training 时间更少

human与AI之间的对话,人类问问题,AI回答。所以创造对话的数据集,再训练base模型。完全一样的算法和模型,只换数据集。数据集需要人肉、加上LLM辅助。

Hallucinations

训练的时候,有模型不知道的问题,那么答案就是不知道。这样的训练样本可以大概解决这个问题。

如何制造这样的训练集?"我不知道"的训练集合。

knowledge of self

默认模型会输出比较模糊的答案。工程师可以hard code一些对话样本,问题是你是谁之类的,然后模型能正确"认识"自己。

Models need tokens to think 理解能力,解题能力

简单的数学题训练样本。模型总是从左到右读token,好的答案是,先给推理,最后给出答案。如果回答是先给出答案,模型倾向于猜答案,所以是不好的。

给chatgpt提问一个数学题,prompt里加上use code,会给出python代码解题。

模型不擅长拼写?因为单词被tokenize了。不擅长数数。

-------------------强化学习 reinforce learning------------------- SFT模型 supervised finetuning model---------

exposition/background knowledge -> pretraining

worked problems -> supervised finetuning

practice problems -> reinforcement learning

根据给出的各种answer,取最好的正确答案和短的答案,训练。

Deepseek-R1 基于强化学习

相关推荐
许泽宇的技术分享15 小时前
百刀打造ChatGPT:nanochat极简LLM全栈实现深度解析
chatgpt·transformer·大语言模型·nanochat
丁学文武1 天前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
2401_841495644 天前
预训练基础模型简介
gpt·语言模型·自然语言处理·bert·transformer·大语言模型·预训练
神奇的代码在哪里7 天前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
镰刀韭菜10 天前
【AI4S】3DSMILES-GPT:基于词元化语言模型的3D分子生成
大语言模型·sas·3dsmiles-gpt·分子设计·基于序列的分子生成·基于骨架的分子生成·vina
deephub10 天前
Google开源Tunix:JAX生态的LLM微调方案来了
人工智能·深度学习·google·微调·大语言模型·jax
镰刀韭菜12 天前
【AI4S】大语言模型与化学的未来,以及整合外部工具和聊天机器人的潜力
llm·transformer·大语言模型·药物设计·分子发现·chemchat·smiles
镰刀韭菜13 天前
【AI4S】ChemLLM:一种化学大型语言模型
大语言模型·ai4s·指令微调·chemllm·chemdata
Bioinfo Guy13 天前
Genome Med|RAG-HPO做表型注释:学习一下大语言模型怎么作为发文思路
人工智能·大语言模型·多组学