multi-head attention 多头注意力实现细节

论文中关于多头注意力的描述

1706.03762

代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
 
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads
 
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
 
        # Linear projections for Q, K, V
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)
 
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        # Q, K, V: (batch_size, num_heads, seq_len, d_k)
        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, float('-inf'))
        attn = F.softmax(scores, dim=-1)
        return torch.matmul(attn, V)
 
    def split_heads(self, x, batch_size):
        # x: (batch_size, seq_len, d_model)
        x = x.view(batch_size, -1, self.num_heads, self.d_k)  # (batch_size, seq_len, num_heads, d_k)
        return x.transpose(1, 2)  # (batch_size, num_heads, seq_len, d_k)
 
    def combine_heads(self, x, batch_size):
        # x: (batch_size, num_heads, seq_len, d_k)
        x = x.transpose(1, 2).contiguous()  # (batch_size, seq_len, num_heads, d_k)
        return x.view(batch_size, -1, self.d_model)  # (batch_size, seq_len, d_model)
 
    def forward(self, Q, K, V, mask=None):
        batch_size = Q.size(0)
 
        Q = self.W_q(Q)  # (batch_size, seq_len, d_model)
        K = self.W_k(K)
        V = self.W_v(V)
 
        Q = self.split_heads(Q, batch_size)  # (batch_size, num_heads, seq_len, d_k)
        K = self.split_heads(K, batch_size)
        V = self.split_heads(V, batch_size)
 
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
        output = self.combine_heads(attn_output, batch_size)
 
        return self.W_o(output)  # Final linear projection

会发现其实代码和论文不是完全一样的,论文看起来是每个头有单独的W去乘,但是代码里是所有头共用W再拆分。其实两者是等价的。要注意一下,在multi-head attention中,输入是不被拆分的,它的shape一直是[L,D_model],拆分的是W,把[D_model, D_model]的矩阵拆分成K个[D_k, D_model]的矩阵。

根据矩阵的乘法定义

复制代码
Y = X W = X [W₁  W₂] = [X W₁   X W₂]

乘之前拆分还是乘之后拆分,是一样的。代码用大矩阵来乘,可以加快计算。

相关推荐
普马萨特6 小时前
自动地址识别技术综述(面向应用)
深度学习
清铎7 小时前
项目_Agent实战
开发语言·人工智能·深度学习·算法·机器学习
薛定谔的猫19827 小时前
十六、用 GPT2 中文古文模型实现经典名句续写
人工智能·深度学习·gpt2·大模型 训练 调优
jay神7 小时前
基于深度学习的交通流量预测系统
人工智能·深度学习·自然语言处理·数据集·计算机毕业设计
春日见7 小时前
Autoware使用教程
大数据·人工智能·深度学习·elasticsearch·搜索引擎·docker·容器
薛定谔的猫19828 小时前
十五、基于 GPT2 中文模型实现歌词自动续写
人工智能·深度学习·gpt2·大模型 训练 调优
大模型玩家七七8 小时前
证据不足 vs 证据冲突:哪个对模型更致命
数据库·人工智能·pytorch·深度学习·安全
Yeats_Liao8 小时前
压力测试实战:基于Locust的高并发场景稳定性验证
人工智能·深度学习·机器学习·华为·开源·压力测试
咚咚王者8 小时前
人工智能之核心技术 深度学习 第六章 生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
IRevers9 小时前
RF-DETR:第一个在COCO上突破60AP的DETR(含检测和分割推理)
图像处理·人工智能·python·深度学习·目标检测·计算机视觉