学习笔记——GPU训练

1.单机单卡配置

单机单卡配置指在一台计算机上使用单个GPU进行模型训练。这种配置适合小规模模型和数据集,配置简单,调试方便。

PyTorch实现代码:

python 复制代码
import torch
model = MyModel().to(device)  # 设备转移
optimizer = optim.Adam(model.parameters())
for data, targets in train_loader:
    data, targets = data.to(device), targets.to(device)
    outputs = model(data)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()

2.单机多卡配置

单机多卡配置利用同一台计算机上的多个GPU协同训练,通过数据并行提高训练效率。适合中等规模模型训练。

PyTorch DDP实现:

python 复制代码
def train_ddp(rank, world_size):
    setup(rank, world_size)
    model = DDP(model_class().to(rank), device_ids=[rank])
    for epoch in range(epochs):
        for data, targets in train_loader:
            data, targets = data.to(rank), targets.to(rank)
            loss = criterion(model(data), targets)
            loss.backward()
            optimizer.step()
    cleanup()

3.多机多卡配置

多机多卡配置跨越多个计算节点,每个节点包含多个GPU,适合大规模模型训练。需要处理更复杂的通信和同步问题。

PyTorch多节点实现:

python 复制代码
def setup(rank, world_size):
    dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = DDP(model, device_ids=[local_rank])

4.性能优化建议

  • 合理设置批量大小
  • 优化数据加载管道
  • 选择合适的通信后端
  • 监控GPU利用率
  • 调整学习率策略

5.适用场景选择

  • 小规模实验:单机单卡
  • 中等规模训练:单机多卡
  • 大规模生产训练:多机多卡

每种配置都有其特点和适用场景,选择时需要综合考虑模型规模、数据集大小、硬件资源等因素。

相关推荐
lingggggaaaa14 小时前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授15 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先15 小时前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws
初願致夕霞15 小时前
学习笔记——基础hash思想及其简单C++实现
笔记·学习·哈希算法
小女孩真可爱15 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
hd51cc15 小时前
C++ 学习笔记 名称
笔记·学习
摇滚侠16 小时前
2025最新 SpringCloud 教程,负载均衡 API 测试,笔记10
笔记·spring cloud·负载均衡
风123456789~17 小时前
【OceanBase专栏】OB租户-创建实验
数据库·笔记·oceanbase
cmcm!17 小时前
学习笔记1
数据库·笔记·学习
Hcoco_me18 小时前
YOLO目标检测学习路线图
学习·yolo·目标检测