乐学LangChain(1):总体架构和核心组件

1、LangChain资料

官网地址:https://www.langchain.com/langchain
官网文档:https://python.langchain.com/docs/introduction/
API文档:https://python.langchain.com/api_reference/
github地址:https://github.com/langchain-ai/langchain

2、总体架构图

官方最新版本虽然都已经是V1了,但是其v0.1~v0.3各版本的架构都有参考价值,大部分都是一脉相承的。
v0.1版本

V0.2 / V0.3 版本

3、内部架构详情

结构1:LangChain
langchain:构成应用程序认知架构的Chains,Agents,Retrieval strategies等。
langchain-community:第三方集成
langchain-Core:基础抽象和LangChain表达式语言 (LCEL)
结构2:LangGraph
LangGraph可以看做基于LangChain的api的进一步封装,能够协调多个Chain、Agent、Tools完成更 复杂的任务,实现更高级的功能。
结构3:LangSmith
https://docs.smith.langchain.com/
**链路追踪。**提供了6大功能,涉及Debugging (调试)、Playground (沙盒)、Prompt Management (提 示管理)、Annotation (注释)、Testing (测试)、Monitoring (监控)等。与LangChain无缝集成,帮助你 从原型阶段过渡到生产阶段。
结构4:LangServe
将LangChain的可运行项和链部署为REST API,使得它们可以通过网络进行调用。
Java怎么调用langchain呢?就通过这个langserve。将langchain应用包装成一个rest api,对外暴露服 务。同时,支持更高的并发,稳定性更好。

4、核心组件

LangChain的核心组件涉及六大模块,这六大模块提供了一个全面且强大的框架,使开发者能够创建复 杂、高效且用户友好的基于大模型的应用。

核心组件1:Model I/O

Model I/O:标准化各个大模型的输入和输出,包含输入模版,模型本身和格式化输出。
以下是使用语言模型从输入到输出的基本流程。

以下是对每一块的总结:

  • Format(格式化):即指代Prompts Template,通过模板管理大模型的输入。将原始数据格式化成 模型可以处理的形式,插入到一个模板问题中,然后送入模型进行处理。
  • Predict(预测):即指代Models,使用通用接口调用不同的大语言模型。接受被送进来的问题,然后基于这个问题进行预测或生成回答。
  • Parse(生成):即指代Output Parser 部分,用来从模型的推理中提取信息,并按照预先设定好的模版来规范化输出。比如,格式化成一个结构化的JSON对象。

核心组件2:Chains

Chain:"链条",用于将多个模块串联起来组成一个完整的流程,是 LangChain 框架中最重要的模块。 例如,一个 Chain 可能包括一个 Prompt 模板、一个语言模型和一个输出解析器,它们一起工作以处理 用户输入、生成响应并处理输出。
常见的Chain类型:
LLMChain:最基础的模型调用链
SequentialChain:多个链串联执行
RouterChain:自动分析用户的需求,引导到最适合的链
RetrievalQA:结合向量数据库进行问答的链

核心组件3:Memory

Memory:记忆模块,用于保存对话历史或上下文信息,以便在后续对话中使用。
常见的 Memory 类型:
ConversationBufferMemory:保存完整的对话历史
ConversationSummaryMemory:保存对话内容的精简摘要(适合长对话)
ConversationSummaryBufferMemory:混合型记忆机制,兼具上面两个类型的特点
VectorStoreRetrieverMemory:保存对话历史存储在向量数据库中

核心组件4:Agents

Agents,对应着智能体,是 LangChain 的高阶能力,它可以自主选择工具并规划执行步骤。
Agent 的关键组成:
AgentType:定义决策逻辑的工作流模式
Tool:是一些内置的功能模块,如API调用、搜索引擎、文本处理、数据查询等工具。Agents通
过这些工具来执行特定的功能。
AgentExecutor:用来运行智能体并执行其决策的工具,负责协调智能体的决策和实际的工具执
行。

核心组件5:Retrieval

Retrieval:对应着RAG,检索外部数据,然后在执行生成步骤时将其传递到 LLM。步骤包括文档加载、 切割、Embedding等

  • Source:数据源,即大模型可以识别的多种类型的数据:视频、图片、文本、代码、文档等。
  • Load:负责将来自不同数据源的非结构化数据,加载为文档(Document)对象
  • Transform:负责对加载的文档进行转换和处理,比如将文本拆分为具有语义意义的小块。
  • Embed:将文本编码为向量的能力。一种用于嵌入文档,另一种用于嵌入查询
  • Store:将向量化后的数据进行存储
  • Retrieve:从大规模文本库中检索和查询相关的文本段落

核心组件6:Callbacks

Callbacks:回调机制,允许连接到 LLM 应用程序的各个阶段,可以监控和分析LangChain的运行情 况,比如日志记录、监控、流传输等,以优化性能。
回调函数,对于程序员们应该都不陌⽣。这个函数允许我们在LLM的各个阶段使⽤各种各样的
"钩⼦",从而达实现⽇志的记录、监控以及流式传输等功能。

相关推荐
玄同76510 小时前
LangChain v1.0 中间件深度解析:从 Callback 到 Middleware 的演进
人工智能·语言模型·自然语言处理·中间件·langchain·agent·智能体
沐雪架构师10 小时前
LangChain 1.0 记忆管理:短期与长期记忆详解
服务器·数据库·langchain
TGITCIC14 小时前
LangChain入门(十五)- LangGraph为什么这么香,看它是如何逆天DIFY的
langchain·工作流·rag·ai agent·ai智能体·langgraph·agentic
番茄大王sc1 天前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
玄同7651 天前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
TGITCIC1 天前
LangChain入门(十四)- Agentic RAG 的正确打开方式:用 LangChain 实现“有思考、可解释、不遗漏”的检索增强问答
langchain·rag·ai agent·agentic·智能体开发·rag增强检索·agentic flow
方见华Richard1 天前
自指系统的安全本体论:论内生安全性的哲学基础与形式化路径
人工智能·经验分享·交互·学习方法·原型模式
TGITCIC1 天前
LangChain入门(十三)- 6步实操Agent落地大法
langchain·agent·rag·ai agent·ai开发·agent开发·ai智能体开发
我命由我123451 天前
Git 初始化本地仓库并推送到远程仓库解读
运维·服务器·经验分享·笔记·git·学习·学习方法
一只大侠的侠1 天前
零基础入门:使用LangChain + GPT-4
langchain