机器学习(7)逻辑回归及其成本函数

一、使用线性回归进行分类任务

在分类任务中(例如判断肿瘤是良性(0)还是恶性(1) ),如果直接使用线性回归模型

则预测结果可能超出区间 [0,1],而概率必须在这个区间内。因此,我们需要一个能够将任意实数映射到 [0,1] 的函数------这就是Sigmoid函数(逻辑函数)


二、逻辑回归(Logistic Regression)

1. 肿瘤分类案例

我们的目标是预测"肿瘤为恶性"的概率。

  • 设 y=0:肿瘤良性

  • y=1:肿瘤恶性

2. 构建逻辑函数

逻辑回归的核心公式为:

其中:

Sigmoid函数 g(z) 的作用是把线性结果 z 转换为一个范围在 (0,1) 之间的概率值。

例如:


三、边界决策(Decision Boundary)

在逻辑回归中,我们通常选择0.5作为分类边界:

  • ,表示恶性概率为 90%,则预测为 1。

  • ,表示恶性概率为 20%,则预测为 0。

线性决策边界对应于一个直线方程

非线性决策边界可以通过加入多项式特征实现(例如 )。


四、逻辑回归的成本函数(Cost Function)

1. 为什么不能使用平方误差?

若使用平方误差代价函数:

在逻辑回归中会导致非凸函数(Non-convex),训练时可能陷入局部最小值,优化困难。

2. 逻辑回归的损失函数定义

为了让优化问题成为凸函数,我们定义单个样本的损失函数(Loss Function)为:

这意味着:

  • 若真实标签是 1,模型应尽量让 靠近 1,否则 会很大;

  • 若真实标签是 0,模型应让 靠近 0,否则 会很大。


五、逻辑回归的简化成本函数

可以把上面的两个情况合并为一个公式

整个训练集的平均成本函数为:

这个函数是凸函数(bowl shape),可以使用梯度下降高效求得最优解。


六、例子:肿瘤预测分类

假设我们有以下肿瘤数据(单特征):

肿瘤大小 x 是否恶性 y
1.0 0
2.0 0
3.0 0
4.0 1
5.0 1

我们模型设为:

假设训练得到参数 w=1.5,b=−4.0。

当 x=3 时:

表示"恶性肿瘤"的概率为 62%,因此预测类别为 1(恶性)


总结:

  • 逻辑回归不是"回归"而是"分类"模型;

  • 使用 Sigmoid 函数将线性输出转化为概率;

  • 损失函数为对数损失(Log Loss),确保优化问题凸;

  • 常用梯度下降法最小化 J(w,b)。

相关推荐
用户5191495848455 分钟前
探秘C#伪随机数生成器的安全漏洞与破解之道
人工智能·aigc
小糖学代码10 分钟前
LLM系列:1.python入门:2.数值型对象
人工智能·python·ai
gs8014022 分钟前
Ascend 服务器是什么?(Ascend Server / 昇腾服务器)
运维·服务器·人工智能
csdn_aspnet29 分钟前
AI赋能各类主流编程语言
人工智能·ai·软件开发
CodeNerd影38 分钟前
RAG文件检索增强(基于吴恩达课程)
人工智能
阿里云大数据AI技术1 小时前
一行代码,让Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
人工智能
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(前三章综合问答)
人工智能·笔记·学习
霍格沃兹测试学院-小舟畅学1 小时前
告别误判:基于n8n构建你的AI输出安全测试护盾
人工智能
阿乔外贸日记1 小时前
中国汽车零配件出口企业情况
大数据·人工智能·智能手机·云计算·汽车
LCG米1 小时前
[OpenVINO实战] 在边缘设备上运行Stable Diffusion,实现离线文生图
人工智能·stable diffusion·openvino