机器学习(7)逻辑回归及其成本函数

一、使用线性回归进行分类任务

在分类任务中(例如判断肿瘤是良性(0)还是恶性(1) ),如果直接使用线性回归模型

则预测结果可能超出区间 [0,1],而概率必须在这个区间内。因此,我们需要一个能够将任意实数映射到 [0,1] 的函数------这就是Sigmoid函数(逻辑函数)


二、逻辑回归(Logistic Regression)

1. 肿瘤分类案例

我们的目标是预测"肿瘤为恶性"的概率。

  • 设 y=0:肿瘤良性

  • y=1:肿瘤恶性

2. 构建逻辑函数

逻辑回归的核心公式为:

其中:

Sigmoid函数 g(z) 的作用是把线性结果 z 转换为一个范围在 (0,1) 之间的概率值。

例如:


三、边界决策(Decision Boundary)

在逻辑回归中,我们通常选择0.5作为分类边界:

  • ,表示恶性概率为 90%,则预测为 1。

  • ,表示恶性概率为 20%,则预测为 0。

线性决策边界对应于一个直线方程

非线性决策边界可以通过加入多项式特征实现(例如 )。


四、逻辑回归的成本函数(Cost Function)

1. 为什么不能使用平方误差?

若使用平方误差代价函数:

在逻辑回归中会导致非凸函数(Non-convex),训练时可能陷入局部最小值,优化困难。

2. 逻辑回归的损失函数定义

为了让优化问题成为凸函数,我们定义单个样本的损失函数(Loss Function)为:

这意味着:

  • 若真实标签是 1,模型应尽量让 靠近 1,否则 会很大;

  • 若真实标签是 0,模型应让 靠近 0,否则 会很大。


五、逻辑回归的简化成本函数

可以把上面的两个情况合并为一个公式

整个训练集的平均成本函数为:

这个函数是凸函数(bowl shape),可以使用梯度下降高效求得最优解。


六、例子:肿瘤预测分类

假设我们有以下肿瘤数据(单特征):

肿瘤大小 x 是否恶性 y
1.0 0
2.0 0
3.0 0
4.0 1
5.0 1

我们模型设为:

假设训练得到参数 w=1.5,b=−4.0。

当 x=3 时:

表示"恶性肿瘤"的概率为 62%,因此预测类别为 1(恶性)


总结:

  • 逻辑回归不是"回归"而是"分类"模型;

  • 使用 Sigmoid 函数将线性输出转化为概率;

  • 损失函数为对数损失(Log Loss),确保优化问题凸;

  • 常用梯度下降法最小化 J(w,b)。

相关推荐
AKAMAI4 小时前
Akamai与Bitmovin:革新直播与点播视频流服务
人工智能·云原生·云计算
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-54]:模型层技术 - 数据结构+算法 = 程序
数据结构·人工智能·算法
大千AI助手5 小时前
GELU(高斯误差线性单元)激活函数全面解析
人工智能·深度学习·神经网络·激活函数·正态分布·gelu·高斯误差线性单元
孤独野指针*P5 小时前
面向边缘AI视觉系统的低成本硬件方案
人工智能
RAG专家5 小时前
【ReAcTable】面向表格问答任务的ReAct增强框架
人工智能·语言模型·表格问答·表格理解
文火冰糖的硅基工坊6 小时前
[人工智能-大模型-51]:Transformer、大模型、Copilot、具身智能、多模态、空间智能、世界模型,什么意思,它们不同点和联系
人工智能·transformer·copilot
彩云回6 小时前
LOESS回归
人工智能·机器学习·回归·1024程序员节
加油吧zkf6 小时前
生成式对抗网络 GAN:从零理解生成对抗网络的原理与魅力
人工智能·python·gan
算家计算6 小时前
云计算大佬揭秘AI如何改变程序员未来,这些技能将成关键
人工智能·程序员·云计算