pytorch下对各种超参调整效果

cpp 复制代码
#GPU训练
import torch
from torch import nn
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#1.准备训练数据 测试数据
train_data = torchvision.datasets.CIFAR10(
    root="./",
    train=True,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
test_data = torchvision.datasets.CIFAR10(
    root="./",
    train=False,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
train_size = len(train_data)
test_size = len(test_data)
#加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#2.创建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),

            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),

            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
    
#3.实例化模型
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
    print("GPU训练")
else:
    print("CPU训练")

#4.损失函数与优化器
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr= learning_rate)

#5.训练与测试
epoch = 10
for i in range(epoch):
    acy = 0
    total_loss = 0
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        acy_t = (outputs.argmax(1) == targets).sum()
        acy += acy_t
        loss = loss_fn(outputs, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss+=loss.item()
    print("训练epoch:{}, loss:{} acy:{}".format(i+1, total_loss, acy/train_size))


#6.测试
accuracy = 0
tudui.eval()
with torch.no_grad():
    for data in test_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        accuracy_t = (outputs.argmax(1) == targets).sum()
        accuracy += accuracy_t
print("测试集合的正确率为:{}".format(accuracy/test_size))

以上代码,训练结果如下:

加入了归一化:

加入激活函数:

dropout()在各种参数下:

cpp 复制代码
0.1
训练epoch:10, loss:391.0225857049227 acy:0.8289600014686584
测试集合的正确率为:0.7027999758720398

0.2
训练epoch:10, loss:439.34341555833817 acy:0.8060199618339539
测试集合的正确率为:0.6718999743461609

0.3
训练epoch:10, loss:478.8938387930393 acy:0.7883599996566772
测试集合的正确率为:0.652999997138977

0.4
训练epoch:10, loss:537.8044945299625 acy:0.7644599676132202
测试集合的正确率为:0.7123000025749207

0.5
训练epoch:10, loss:594.5000147819519 acy:0.7396399974822998
测试集合的正确率为:0.6775999665260315

0.8
训练epoch:10, loss:904.8575140833855 acy:0.5776599645614624
测试集合的正确率为:0.538599967956543

以下也是0.4时:

优化器SGD()改为Adm():

学习率从0.01改为0.001,改变不大

Batch_size从64到128

修改了以上各种参数的代码:

cpp 复制代码
#GPU训练
import torch
from torch import nn
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#1.准备训练数据 测试数据
train_data = torchvision.datasets.CIFAR10(
    root="./",
    train=True,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
test_data = torchvision.datasets.CIFAR10(
    root="./",
    train=False,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
train_size = len(train_data)
test_size = len(test_data)
#加载数据集
train_dataloader = DataLoader(train_data, batch_size=128, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=128, shuffle=False)

#2.创建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),

            nn.Conv2d(32, 64, 5, 1, 2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),

            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(0.4),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
    
#3.实例化模型
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
    print("GPU训练")
else:
    print("CPU训练")

#4.损失函数与优化器
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
learning_rate = 1e-3
optimizer = torch.optim.Adam(tudui.parameters(), lr= learning_rate)

#5.训练与测试
epoch = 10
for i in range(epoch):
    acy = 0
    total_loss = 0
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        acy_t = (outputs.argmax(1) == targets).sum()
        acy += acy_t
        loss = loss_fn(outputs, targets)
        print("this batch of loss:{}".format(loss.item()))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss+=loss.item()
    print("训练epoch:{}, loss:{} acy:{}".format(i+1, total_loss, acy/train_size))


#6.测试
accuracy = 0
tudui.eval()
with torch.no_grad():
    for data in test_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        accuracy_t = (outputs.argmax(1) == targets).sum()
        accuracy += accuracy_t
print("测试集合的正确率为:{}".format(accuracy/test_size))
相关推荐
风清再凯14 小时前
02_prometheus监控&Grafana展示
prometheus·1024程序员节
心灵宝贝14 小时前
申威服务器安装Java11(swjdk-11u-9.ky10.sw_64.rpm)详细操作步骤(附安装包)
1024程序员节
傻童:CPU14 小时前
C语言需要掌握的基础知识点之链表
c语言·1024程序员节
乐之者v14 小时前
Mac常用软件
java·1024程序员节
IAMeee14 小时前
从项目中学习CAN和CANFD报文结构(新手入门)
自动化测试·can·uds·canfd·1024程序员节
小陈爱建模14 小时前
2025妈妈杯大数据竞赛B题mathorcup:物流理赔风险识别及服务升级数学建模数模教学大学生辅导思路代码助攻
数学建模·1024程序员节
社会底层无业大学生14 小时前
uniapp微信小程序简单表格展示
微信小程序·小程序·uni-app·vue·1024程序员节
微学AI14 小时前
国产数据库替代MongoDB的技术实践过程:金仓多模数据库在电子证照系统中的深度应用
数据库·人工智能·1024程序员节
北极糊的狐14 小时前
文件系统exFAT 和 FAT32 的区别
1024程序员节