pytorch下对各种超参调整效果

cpp 复制代码
#GPU训练
import torch
from torch import nn
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#1.准备训练数据 测试数据
train_data = torchvision.datasets.CIFAR10(
    root="./",
    train=True,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
test_data = torchvision.datasets.CIFAR10(
    root="./",
    train=False,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
train_size = len(train_data)
test_size = len(test_data)
#加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#2.创建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),

            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),

            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
    
#3.实例化模型
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
    print("GPU训练")
else:
    print("CPU训练")

#4.损失函数与优化器
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr= learning_rate)

#5.训练与测试
epoch = 10
for i in range(epoch):
    acy = 0
    total_loss = 0
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        acy_t = (outputs.argmax(1) == targets).sum()
        acy += acy_t
        loss = loss_fn(outputs, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss+=loss.item()
    print("训练epoch:{}, loss:{} acy:{}".format(i+1, total_loss, acy/train_size))


#6.测试
accuracy = 0
tudui.eval()
with torch.no_grad():
    for data in test_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        accuracy_t = (outputs.argmax(1) == targets).sum()
        accuracy += accuracy_t
print("测试集合的正确率为:{}".format(accuracy/test_size))

以上代码,训练结果如下:

加入了归一化:

加入激活函数:

dropout()在各种参数下:

cpp 复制代码
0.1
训练epoch:10, loss:391.0225857049227 acy:0.8289600014686584
测试集合的正确率为:0.7027999758720398

0.2
训练epoch:10, loss:439.34341555833817 acy:0.8060199618339539
测试集合的正确率为:0.6718999743461609

0.3
训练epoch:10, loss:478.8938387930393 acy:0.7883599996566772
测试集合的正确率为:0.652999997138977

0.4
训练epoch:10, loss:537.8044945299625 acy:0.7644599676132202
测试集合的正确率为:0.7123000025749207

0.5
训练epoch:10, loss:594.5000147819519 acy:0.7396399974822998
测试集合的正确率为:0.6775999665260315

0.8
训练epoch:10, loss:904.8575140833855 acy:0.5776599645614624
测试集合的正确率为:0.538599967956543

以下也是0.4时:

优化器SGD()改为Adm():

学习率从0.01改为0.001,改变不大

Batch_size从64到128

修改了以上各种参数的代码:

cpp 复制代码
#GPU训练
import torch
from torch import nn
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#1.准备训练数据 测试数据
train_data = torchvision.datasets.CIFAR10(
    root="./",
    train=True,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
test_data = torchvision.datasets.CIFAR10(
    root="./",
    train=False,
    transform=torchvision.transforms.ToTensor(),
    download=True
)
train_size = len(train_data)
test_size = len(test_data)
#加载数据集
train_dataloader = DataLoader(train_data, batch_size=128, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=128, shuffle=False)

#2.创建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),

            nn.Conv2d(32, 64, 5, 1, 2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),

            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(0.4),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x
    
#3.实例化模型
tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
    print("GPU训练")
else:
    print("CPU训练")

#4.损失函数与优化器
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
learning_rate = 1e-3
optimizer = torch.optim.Adam(tudui.parameters(), lr= learning_rate)

#5.训练与测试
epoch = 10
for i in range(epoch):
    acy = 0
    total_loss = 0
    tudui.train()
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        acy_t = (outputs.argmax(1) == targets).sum()
        acy += acy_t
        loss = loss_fn(outputs, targets)
        print("this batch of loss:{}".format(loss.item()))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss+=loss.item()
    print("训练epoch:{}, loss:{} acy:{}".format(i+1, total_loss, acy/train_size))


#6.测试
accuracy = 0
tudui.eval()
with torch.no_grad():
    for data in test_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs, targets = imgs.cuda(), targets.cuda()
        outputs = tudui(imgs)
        accuracy_t = (outputs.argmax(1) == targets).sum()
        accuracy += accuracy_t
print("测试集合的正确率为:{}".format(accuracy/test_size))
相关推荐
CoderYanger21 小时前
动态规划算法-简单多状态dp问题:15.买卖股票的最佳时机含冷冻期
开发语言·算法·leetcode·动态规划·1024程序员节
CoderYanger21 小时前
递归、搜索与回溯-FloodFill:33.太平洋大西洋水流问题
java·算法·leetcode·1024程序员节
CoderYanger1 天前
动态规划算法-斐波那契数列模型:2.三步问题
开发语言·算法·leetcode·面试·职场和发展·动态规划·1024程序员节
CoderYanger1 天前
动态规划算法-简单多状态dp问题:16.买卖股票的最佳时机含手续费
开发语言·算法·leetcode·动态规划·1024程序员节
CoderYanger1 天前
C.滑动窗口-求子数组个数-越短越合法——3258. 统计满足 K 约束的子字符串数量 I
java·开发语言·算法·leetcode·1024程序员节
CoderYanger1 天前
动态规划算法-路径问题:9.最小路径和
开发语言·算法·leetcode·动态规划·1024程序员节
CoderYanger1 天前
动态规划算法-路径问题:7.礼物的最大价值
开发语言·算法·leetcode·动态规划·1024程序员节
CoderYanger1 天前
动态规划算法-简单多状态dp问题:12.打家劫舍Ⅱ
开发语言·算法·leetcode·职场和发展·动态规划·1024程序员节
金融小师妹1 天前
机器学习驱动分析:ADP就业数据异常波动,AI模型预测12月降息概率达89%
大数据·人工智能·深度学习·编辑器·1024程序员节
CoderYanger1 天前
动态规划算法-简单多状态dp问题:18.买卖股票的最佳时机Ⅳ
开发语言·算法·leetcode·动态规划·1024程序员节