【AI入门】什么是训练和推理

AI 训练的基本概念

AI训练是指通过大量数据让机器学习模型调整参数,以最小化预测误差的过程。常见的训练方法包括监督学习、无监督学习和强化学习。监督学习依赖于标注数据,通过输入输出对训练模型;无监督学习则从无标注数据中发现隐藏模式;强化学习通过奖励机制指导模型行为优化。

训练过程通常涉及以下核心组件:

  • 损失函数:衡量模型预测与真实值的差距,例如均方误差(MSE)或交叉熵。
  • 优化器:如随机梯度下降(SGD)或Adam,用于调整模型参数。
  • 反向传播:通过链式法则计算梯度,逐层更新神经网络权重。

数学公式示例(线性回归损失函数): $$ L = \frac{1}{N} \sum_{i=1}^{N} (y_i - (wx_i + b))^2 $$


AI 推理的基本概念

推理是指训练完成的模型对新数据进行预测或决策的过程。与训练不同,推理阶段通常关闭梯度计算以提高效率。关键技术包括:

  • 模型压缩:通过量化(如FP16转INT8)、剪枝或知识蒸馏减少计算资源占用。
  • 并行计算:利用GPU/TPU加速矩阵运算,支持高并发请求。
  • 动态批处理:自动合并多个请求以提高吞吐量。

代码示例(PyTorch推理模式):

复制代码

python复制插入

复制代码
`model.eval()  # 关闭Dropout等训练专用层
with torch.no_grad():
    output = model(input_data)
`

复制插入


性能优化方法

训练优化

  • 混合精度训练:结合FP16和FP32减少显存占用
  • 数据流水线:预加载和并行数据增强
  • 分布式训练:使用Horovod或PyTorch DDP跨多节点同步梯度

推理优化

  • 模型序列化:导出为ONNX或TorchScript格式
  • 缓存机制:对重复请求复用计算结果
  • 硬件专用加速:如NVIDIA TensorRT优化计算图

典型应用场景差异

  • 训练阶段:需完整数据集和迭代调参,耗时长且资源密集,适合离线环境。
  • 推理阶段:要求低延迟和高可用性,常部署为云服务或边缘计算设备。

例如,自动驾驶系统在车辆端运行轻量化推理模型,同时定期将采集数据传回云端更新训练模型。

相关推荐
2501_94493473几秒前
大专大数据管理与应用专业,怎么自学数据治理相关知识?
人工智能
芷栀夏1 分钟前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
Yuer20259 分钟前
为什么说在真正的合规体系里,“智能”是最不重要的指标之一。
人工智能·edca os·可控ai
一切尽在,你来10 分钟前
1.4 LangChain 1.2.7 核心架构概览
人工智能·langchain·ai编程
爱吃大芒果13 分钟前
CANN ops-nn 算子开发指南:NPU 端神经网络计算加速实战
人工智能·深度学习·神经网络
聆风吟º15 分钟前
CANN ops-nn 实战指南:异构计算场景中神经网络算子的调用、调优与扩展技巧
人工智能·深度学习·神经网络·cann
2601_9495936520 分钟前
CANN加速人脸检测推理:多尺度特征金字塔与锚框优化
人工智能
小刘的大模型笔记22 分钟前
大模型LoRA微调全实战:普通电脑落地,附避坑手册
人工智能·电脑
乾元22 分钟前
身份与访问:行为生物识别(按键习惯、移动轨迹)的 AI 建模
运维·网络·人工智能·深度学习·安全·自动化·安全架构
happyprince22 分钟前
2026年02月07日全球AI前沿动态
人工智能