【AI入门】什么是训练和推理

AI 训练的基本概念

AI训练是指通过大量数据让机器学习模型调整参数,以最小化预测误差的过程。常见的训练方法包括监督学习、无监督学习和强化学习。监督学习依赖于标注数据,通过输入输出对训练模型;无监督学习则从无标注数据中发现隐藏模式;强化学习通过奖励机制指导模型行为优化。

训练过程通常涉及以下核心组件:

  • 损失函数:衡量模型预测与真实值的差距,例如均方误差(MSE)或交叉熵。
  • 优化器:如随机梯度下降(SGD)或Adam,用于调整模型参数。
  • 反向传播:通过链式法则计算梯度,逐层更新神经网络权重。

数学公式示例(线性回归损失函数): $$ L = \frac{1}{N} \sum_{i=1}^{N} (y_i - (wx_i + b))^2 $$


AI 推理的基本概念

推理是指训练完成的模型对新数据进行预测或决策的过程。与训练不同,推理阶段通常关闭梯度计算以提高效率。关键技术包括:

  • 模型压缩:通过量化(如FP16转INT8)、剪枝或知识蒸馏减少计算资源占用。
  • 并行计算:利用GPU/TPU加速矩阵运算,支持高并发请求。
  • 动态批处理:自动合并多个请求以提高吞吐量。

代码示例(PyTorch推理模式):

复制代码

python复制插入

复制代码
`model.eval()  # 关闭Dropout等训练专用层
with torch.no_grad():
    output = model(input_data)
`

复制插入


性能优化方法

训练优化

  • 混合精度训练:结合FP16和FP32减少显存占用
  • 数据流水线:预加载和并行数据增强
  • 分布式训练:使用Horovod或PyTorch DDP跨多节点同步梯度

推理优化

  • 模型序列化:导出为ONNX或TorchScript格式
  • 缓存机制:对重复请求复用计算结果
  • 硬件专用加速:如NVIDIA TensorRT优化计算图

典型应用场景差异

  • 训练阶段:需完整数据集和迭代调参,耗时长且资源密集,适合离线环境。
  • 推理阶段:要求低延迟和高可用性,常部署为云服务或边缘计算设备。

例如,自动驾驶系统在车辆端运行轻量化推理模型,同时定期将采集数据传回云端更新训练模型。

相关推荐
shadowcz00740 分钟前
关于GEO的研究总结#使用 Notebooklm 来研究论文和整理报告#PDF分享
人工智能·pdf
生成论实验室1 小时前
即事是道:一种基于生成论的分布式体验存在论
人工智能·分布式·科技·神经网络·信息与通信
锋行天下6 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮8 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水8 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊8 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘8 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15889 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14559 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI9 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment