【AI入门】什么是训练和推理

AI 训练的基本概念

AI训练是指通过大量数据让机器学习模型调整参数,以最小化预测误差的过程。常见的训练方法包括监督学习、无监督学习和强化学习。监督学习依赖于标注数据,通过输入输出对训练模型;无监督学习则从无标注数据中发现隐藏模式;强化学习通过奖励机制指导模型行为优化。

训练过程通常涉及以下核心组件:

  • 损失函数:衡量模型预测与真实值的差距,例如均方误差(MSE)或交叉熵。
  • 优化器:如随机梯度下降(SGD)或Adam,用于调整模型参数。
  • 反向传播:通过链式法则计算梯度,逐层更新神经网络权重。

数学公式示例(线性回归损失函数): $$ L = \frac{1}{N} \sum_{i=1}^{N} (y_i - (wx_i + b))^2 $$


AI 推理的基本概念

推理是指训练完成的模型对新数据进行预测或决策的过程。与训练不同,推理阶段通常关闭梯度计算以提高效率。关键技术包括:

  • 模型压缩:通过量化(如FP16转INT8)、剪枝或知识蒸馏减少计算资源占用。
  • 并行计算:利用GPU/TPU加速矩阵运算,支持高并发请求。
  • 动态批处理:自动合并多个请求以提高吞吐量。

代码示例(PyTorch推理模式):

复制代码

python复制插入

复制代码
`model.eval()  # 关闭Dropout等训练专用层
with torch.no_grad():
    output = model(input_data)
`

复制插入


性能优化方法

训练优化

  • 混合精度训练:结合FP16和FP32减少显存占用
  • 数据流水线:预加载和并行数据增强
  • 分布式训练:使用Horovod或PyTorch DDP跨多节点同步梯度

推理优化

  • 模型序列化:导出为ONNX或TorchScript格式
  • 缓存机制:对重复请求复用计算结果
  • 硬件专用加速:如NVIDIA TensorRT优化计算图

典型应用场景差异

  • 训练阶段:需完整数据集和迭代调参,耗时长且资源密集,适合离线环境。
  • 推理阶段:要求低延迟和高可用性,常部署为云服务或边缘计算设备。

例如,自动驾驶系统在车辆端运行轻量化推理模型,同时定期将采集数据传回云端更新训练模型。

相关推荐
阿星AI工作室几秒前
第一次围观AI打牌,明星模型居然集体翻车?丨开源项目CATArena拆解
人工智能
jqrbcts7 分钟前
关于发那科机器人如何时时把角度发给PLC
java·服务器·网络·人工智能
Rainly20008 分钟前
深度学习旅程之数学统计底座
人工智能·深度学习
QBoson12 分钟前
AI设计RNA开关新突破:受限玻尔兹曼机让人工分子“听懂”代谢物信号
人工智能
paopao_wu14 分钟前
AI编程工具-Trae: SOLO模式
人工智能·ai编程·trae
AC赳赳老秦19 分钟前
行业数据 benchmark 对比:DeepSeek上传数据生成竞品差距分析报告
开发语言·网络·人工智能·python·matplotlib·涛思数据·deepseek
小鸡吃米…22 分钟前
带Python的人工智能——深度学习
人工智能·python·深度学习
AC赳赳老秦25 分钟前
财务数据智能解读:DeepSeek分析利润表生成异常波动原因报告
数据库·人工智能·postgresql·zookeeper·测试用例·时序数据库·deepseek
沛沛老爹27 分钟前
Web开发者进阶AI:Advanced-RAG上下文压缩与过滤原理及实战应用
人工智能·rag·faq·文档细粒度·自适应切分
Dontla28 分钟前
2025 年个人成长与技术年度总结
人工智能