深度学习——图像分割

一、图像分割基础

  • 定义:对图像像素进行细粒度分类,明确目标轮廓,划分不同类别。
  • 应用场景:涵盖人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像等领域。
  • 前景与背景:前景为可数目标(如行人),背景为不可数场景元素(如天空、草地)。
  • 三层境界:语义分割(像素单类别分配,输出掩膜) 实例分割(仅预测前景目标的类别、边框及个体 ID,像素可属多 ID) 全景分割(像素分配语义类别 + 唯一实例 ID)。

二、核心数据集

  • VOC 数据集:含 4 大类 20 小类,2007 年起支持语义与实例分割标注,2007 版有 9963 张图片 / 24640 个目标,2012 版有 23080 张图片 / 54900 个目标,另有 2913 张标注图(含训练、验证集)。
  • Cityscape 数据集:聚焦 50 个城市的街景图,含 30 个类别,提供 5000 张精细标注图(分训练、验证、测试集)和 20000 张粗略标注图,支持语义与实例分割。
  • COCO 数据集:侧重复杂日常场景,共 91 类(82 类有超 5000 个实例),以 4 岁小孩可辨识为分类基准。

三、评估指标

  • 基础指标:Pixel Accuracy(PA):逐像素分类精度 Mean Pixel Accuracy(MPA):类内正确分类像素比例。
  • 核心指标:IoU(前景目标交并比)、mIoU(各类 IoU 平均值)、FWIoU(带类别概率权重的 mIoU)。

四、技术核心

  • 网络模块:由卷积模块(提取图像特征)和反卷积模块(上采样恢复原图尺度)构成。
  • 转置卷积:卷积为 4×4 输入转 2×2 输出(3×3 卷积核),反卷积为 2×2 输入转 4×4 输出(3×3 卷积核),二者呈转置关系,通过稀疏矩阵运算实现。

五、典型网络结构

  • 采用 "编码器 (卷积模块)- 解码器(反卷积模块)" 架构,编码器为卷积网络(含多次最大池化),解码器为反卷积网络(含多次反池化),逐步完成特征提取与图像尺度恢复。
相关推荐
FIT2CLOUD飞致云11 分钟前
学习笔记丨MaxKB Office Word AI翻译加载项的实现
人工智能·ai·开源·智能体·maxkb
机器视觉的发动机18 分钟前
从实验室到工业现场:机器人视觉感知系统的边缘AI架构实战, 深度解析硬件选型、TensorRT量化加速与多传感器融合的极致优化方案
人工智能·机器人·视觉检测·人机交互·机器视觉
雾削木25 分钟前
AI文献提示词prompts
人工智能
~kiss~32 分钟前
大模型中激活函数、前馈神经网络 (FFN) 的本质
人工智能·深度学习·神经网络
老兵发新帖44 分钟前
推理平台ONNX性能对比PyTorch原生格式
人工智能
犀思云1 小时前
企业端到端NaaS连接的优势与应用
网络·人工智能·机器人·智能仓储·专线
Keep_Trying_Go1 小时前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
Spey_Events1 小时前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
JoySSLLian1 小时前
IP SSL证书:一键解锁IP通信安全,高效抵御网络威胁!
网络·人工智能·网络协议·tcp/ip·ssl
AC赳赳老秦1 小时前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek