Formatting Outputs for ChatPrompt Templates(two)

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/format_output

This guide explains how to use the format method of ChatPrompt (in LangChain) to get outputs in three useful formats. All examples use the same core task: creating a prompt for translating English to French. We'll keep code and outputs exactly as in the original source---no changes.

Key Background First

Before diving into formats, remember: A ChatPrompt typically includes a SystemMessage (tells the AI its role) and a HumanMessage (the user's input). For our examples, the ChatPrompt is set up to translate text from an input_language to an output_language (we'll use English → French).

1. Output as a String

The simplest format: a plain text string that combines the system message and human message. There are two equivalent ways to get this.

Method 1: Use chat_prompt.format()

This directly returns the prompt as a string.

Code (From Original Source)
python 复制代码
# Assume `chat_prompt` is already set up for translation (English → French)
output = chat_prompt.format(
    input_language="English", 
    output_language="French", 
    text="I love programming."
)
print(output)
Output (From Original Source)
复制代码
System: You are a helpful assistant that translates English to French.
Human: I love programming.

Method 2: Use chat_prompt.format_prompt().to_string()

This is a two-step way to get the same string. First, format_prompt() creates a ChatPromptValue (see Section 2), then to_string() converts it to text.

Code (From Original Source)
python 复制代码
output_2 = chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_string()

# Check if both outputs are identical (they will be!)
assert output == output_2  # No error means they match

What This Means

Both methods give you a readable text string. Use this if you want to quickly check or share the prompt content.

2. Output as a ChatPromptValue

ChatPromptValue is a special LangChain object that stores the full prompt (with messages). It's not just text---it keeps track of the message types (system vs. human).

Code (From Original Source)

python 复制代码
chat_prompt_value = chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
)
print(chat_prompt_value)
Output (From Original Source)
复制代码
ChatPromptValue(messages=[
    SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), 
    HumanMessage(content='I love programming.', additional_kwargs={})
])

What This Means

  • ChatPromptValue has a messages attribute that holds a list of message objects (here: SystemMessage and HumanMessage).
  • Use this if you need to work with the prompt as a structured object (not just text) in LangChain workflows.

3. Output as a List of Message Objects

You can convert the ChatPromptValue into a list of SystemMessage and HumanMessage objects. This list is ready to pass directly to Chat models (e.g., ChatOpenAI), since models accept message objects as input.

Code (From Original Source)

python 复制代码
message_list = chat_prompt.format_prompt(
    input_language="English", 
    output_language="French", 
    text="I love programming."
).to_messages()
print(message_list)
Output (From Original Source)
复制代码
[
    SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), 
    HumanMessage(content='I love programming.', additional_kwargs={})
]

What This Means

  • The list contains actual LangChain message objects (not just text).
  • This is the most useful format for running the prompt with a Chat model ---you can pass message_list directly to the model's predict or generate methods.

Quick Summary of All 3 Formats

Format Type How to Get It Use Case
String chat_prompt.format(...) or format_prompt().to_string() Quick checks/sharing prompt text
ChatPromptValue chat_prompt.format_prompt(...) Working with structured prompt objects
List of Message Objects format_prompt().to_messages() Passing input directly to a Chat model

All code, outputs, and logic match the original source---no extra changes or additions.

相关推荐
梁萌21 分钟前
ShardingSphere分库分表实战
数据库·mysql·实战·shardingsphere·分库分表
神仙别闹30 分钟前
基于C语言实现B树存储的图书管理系统
c语言·前端·b树
川石课堂软件测试38 分钟前
Mysql中触发器使用详详详详详解~
数据库·redis·功能测试·mysql·oracle·单元测试·自动化
鹏说大数据1 小时前
数据治理项目实战系列6-数据治理架构设计实战,流程 + 工具双架构拆解
大数据·数据库·架构
玄魂1 小时前
如何查看、生成 github 开源项目star 图表
前端·开源·echarts
唯余旧忆1 小时前
【数据写入】达梦数据库(dm8)merge into写入时序数据速度慢的问题处理
数据库
小二·1 小时前
MyBatis基础入门《十四》多租户架构实战:基于 MyBatis 实现 SaaS 系统的动态数据隔离
数据库·架构·mybatis
前端一小卒2 小时前
一个看似“送分”的需求为何翻车?——前端状态机实战指南
前端·javascript·面试
白衣衬衫 两袖清风2 小时前
SQL联查案例
数据库·sql
syt_10132 小时前
Object.defineProperty和Proxy实现拦截的区别
开发语言·前端·javascript