Prompt Composition with LangChain’s PipelinePromptTemplate

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/prompt_composition

Learning Guide: Prompt Composition with LangChain's PipelinePromptTemplate

This guide simplifies how to combine multiple prompts for reuse (using LangChain's PipelinePromptTemplate), while keeping all original code, examples, and key points exactly as they appear in the link.

1. What is PipelinePromptTemplate?

It's a LangChain tool to reuse parts of prompts. It has two key parts:

  • Final Prompt : The last, complete prompt you get after combining all parts. It uses placeholders (like {introduction}, {example}) to "hold space" for other small prompts.
  • Pipeline Prompts: A list of "name + small prompt" pairs. Each small prompt is formatted first, then put into the final prompt using its name (to match the placeholder).

2. Step-by-Step Code (Exact as Original)

We'll follow the original code step by step. Each code block is unchanged, and we'll explain what it does simply.

Step 1: Import Needed Tools

First, we get the two tools we need from LangChain:

python 复制代码
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
  • PipelinePromptTemplate: Helps combine multiple prompts.
  • PromptTemplate: Makes single, reusable prompt templates.

Step 2: Make the Final Prompt Template

This is the "big" prompt that will hold all the small parts. It uses 3 placeholders:

python 复制代码
full_template = """{introduction}
{example}
{start}"""
full_prompt = PromptTemplate.from_template(full_template)
  • full_template: The structure of the final prompt (with placeholders).
  • PromptTemplate.from_template(): Turns the text structure into a LangChain "prompt object" (so we can use it later).

Step 3: Make Small Reusable Prompts

We create 3 small prompts (each is a reusable part). Each has its own variables:

1. Introduction Prompt (sets who to impersonate)
python 复制代码
introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)
  • Uses {person}: We'll fill this in later (e.g., "Elon Musk").
2. Example Prompt (gives a sample interaction)
python 复制代码
example_template = """Here's an example of an interaction:
Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)
  • Uses {example_q} (sample question) and {example_a} (sample answer).
3. Start Prompt (asks for a real response)
python 复制代码
start_template = """Now, do this for real!
Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)
  • Uses {input}: The real question we want to ask later.

We make a list to connect each small prompt to its placeholder in the final prompt:

python 复制代码
input_prompts = [
    ("introduction", introduction_prompt),  # "introduction" → matches {introduction}
    ("example", example_prompt),            # "example" → matches {example}
    ("start", start_prompt)                 # "start" → matches {start}
]

Step 5: Create the PipelinePromptTemplate

We put the final prompt and the small prompt list together:

python 复制代码
pipeline_prompt = PipelinePromptTemplate(final_prompt=full_prompt, pipeline_prompts=input_prompts)

Step 6: Check Required Variables

To use the pipeline, we need to know all variables we must fill in. The original code shows these variables:

python 复制代码
pipeline_prompt.input_variables
# Output: ['example_a', 'person', 'example_q', 'input']
  • These come from the small prompts: person (from introduction), example_q/example_a (from example), input (from start).

3. Generate the Final Prompt

We fill in all required variables and print the result. The code and output are exactly as in the original:

Code to Format the Prompt

python 复制代码
print(pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Telsa",
    input="What's your favorite social media site?"
))

Final Output

复制代码
You are impersonating Elon Musk.
    Here's an example of an interaction: 
    
    Q: What's your favorite car?
    A: Telsa
    Now, do this for real!
    
    Q: What's your favorite social media site?
    A:

Key Takeaway (No Extra Info)

PipelinePromptTemplate helps you reuse prompt parts (like the "impersonate" or "example" sections) so you don't rewrite code. All parts combine to make one final prompt, and you only need to fill in the required variables.

相关推荐
q***87606 分钟前
Spring Boot 整合 Keycloak
java·spring boot·后端
Billow_lamb7 分钟前
Spring Boot2.x.x全局拦截器
java·spring boot·后端
上不如老下不如小18 分钟前
2025年第七届全国高校计算机能力挑战赛初赛 Java组 编程题汇总
java·计算机能力挑战赛
泉城老铁33 分钟前
Springboot对接mqtt
java·spring boot·后端
FreeCode37 分钟前
LangGraph1.0智能体开发:运行时系统
python·langchain·agent
源码_V_saaskw37 分钟前
JAVA国际版同城跑腿源码快递代取帮买帮送同城服务源码支持Android+IOS+H5
android·java·ios·微信小程序
TT哇42 分钟前
消息推送机制——WebSocket
java·网络·websocket·网络协议
镜花水月linyi1 小时前
ConcurrentHashMap 深入解析:从0到1彻底掌握(1.3万字)
java·后端
极客Bob1 小时前
Java 集合操作完整清单(Java 8+ Stream API)
java
雨中飘荡的记忆1 小时前
Javassist实战指南
java