Prompt Composition with LangChain’s PipelinePromptTemplate

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/prompt_composition

Learning Guide: Prompt Composition with LangChain's PipelinePromptTemplate

This guide simplifies how to combine multiple prompts for reuse (using LangChain's PipelinePromptTemplate), while keeping all original code, examples, and key points exactly as they appear in the link.

1. What is PipelinePromptTemplate?

It's a LangChain tool to reuse parts of prompts. It has two key parts:

  • Final Prompt : The last, complete prompt you get after combining all parts. It uses placeholders (like {introduction}, {example}) to "hold space" for other small prompts.
  • Pipeline Prompts: A list of "name + small prompt" pairs. Each small prompt is formatted first, then put into the final prompt using its name (to match the placeholder).

2. Step-by-Step Code (Exact as Original)

We'll follow the original code step by step. Each code block is unchanged, and we'll explain what it does simply.

Step 1: Import Needed Tools

First, we get the two tools we need from LangChain:

python 复制代码
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
  • PipelinePromptTemplate: Helps combine multiple prompts.
  • PromptTemplate: Makes single, reusable prompt templates.

Step 2: Make the Final Prompt Template

This is the "big" prompt that will hold all the small parts. It uses 3 placeholders:

python 复制代码
full_template = """{introduction}
{example}
{start}"""
full_prompt = PromptTemplate.from_template(full_template)
  • full_template: The structure of the final prompt (with placeholders).
  • PromptTemplate.from_template(): Turns the text structure into a LangChain "prompt object" (so we can use it later).

Step 3: Make Small Reusable Prompts

We create 3 small prompts (each is a reusable part). Each has its own variables:

1. Introduction Prompt (sets who to impersonate)
python 复制代码
introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)
  • Uses {person}: We'll fill this in later (e.g., "Elon Musk").
2. Example Prompt (gives a sample interaction)
python 复制代码
example_template = """Here's an example of an interaction:
Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)
  • Uses {example_q} (sample question) and {example_a} (sample answer).
3. Start Prompt (asks for a real response)
python 复制代码
start_template = """Now, do this for real!
Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)
  • Uses {input}: The real question we want to ask later.

We make a list to connect each small prompt to its placeholder in the final prompt:

python 复制代码
input_prompts = [
    ("introduction", introduction_prompt),  # "introduction" → matches {introduction}
    ("example", example_prompt),            # "example" → matches {example}
    ("start", start_prompt)                 # "start" → matches {start}
]

Step 5: Create the PipelinePromptTemplate

We put the final prompt and the small prompt list together:

python 复制代码
pipeline_prompt = PipelinePromptTemplate(final_prompt=full_prompt, pipeline_prompts=input_prompts)

Step 6: Check Required Variables

To use the pipeline, we need to know all variables we must fill in. The original code shows these variables:

python 复制代码
pipeline_prompt.input_variables
# Output: ['example_a', 'person', 'example_q', 'input']
  • These come from the small prompts: person (from introduction), example_q/example_a (from example), input (from start).

3. Generate the Final Prompt

We fill in all required variables and print the result. The code and output are exactly as in the original:

Code to Format the Prompt

python 复制代码
print(pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Telsa",
    input="What's your favorite social media site?"
))

Final Output

复制代码
You are impersonating Elon Musk.
    Here's an example of an interaction: 
    
    Q: What's your favorite car?
    A: Telsa
    Now, do this for real!
    
    Q: What's your favorite social media site?
    A:

Key Takeaway (No Extra Info)

PipelinePromptTemplate helps you reuse prompt parts (like the "impersonate" or "example" sections) so you don't rewrite code. All parts combine to make one final prompt, and you only need to fill in the required variables.

相关推荐
JIngJaneIL26 分钟前
基于springboot + vue古城景区管理系统(源码+数据库+文档)
java·开发语言·前端·数据库·vue.js·spring boot·后端
专注VB编程开发20年1 小时前
C#全面超越JAVA,主要还是跨平台用的人少
java·c#·.net·跨平台
南_山无梅落1 小时前
9.Python3集合(set)增删改查和推导式
java·开发语言
爱笑的眼睛111 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
全靠bug跑2 小时前
Spring Cloud OpenFeign 实战三部曲:快速集成 · 连接池优化 · 客户端抽取
java·spring boot·openfeign
Evan芙2 小时前
搭建nexus服务,实现本地仓库、代理仓库
java·nginx·tomcat
乂爻yiyao2 小时前
Java LTS版本重要升级特性对照表
java·开发语言
原来是好奇心2 小时前
深入Spring Boot源码(六):Actuator端点与监控机制深度解析
java·开发语言·源码·springboot
叠叠乐3 小时前
robot_state_publisher 参数
java·前端·算法