Prompt Composition with LangChain’s PipelinePromptTemplate

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/prompt_composition

Learning Guide: Prompt Composition with LangChain's PipelinePromptTemplate

This guide simplifies how to combine multiple prompts for reuse (using LangChain's PipelinePromptTemplate), while keeping all original code, examples, and key points exactly as they appear in the link.

1. What is PipelinePromptTemplate?

It's a LangChain tool to reuse parts of prompts. It has two key parts:

  • Final Prompt : The last, complete prompt you get after combining all parts. It uses placeholders (like {introduction}, {example}) to "hold space" for other small prompts.
  • Pipeline Prompts: A list of "name + small prompt" pairs. Each small prompt is formatted first, then put into the final prompt using its name (to match the placeholder).

2. Step-by-Step Code (Exact as Original)

We'll follow the original code step by step. Each code block is unchanged, and we'll explain what it does simply.

Step 1: Import Needed Tools

First, we get the two tools we need from LangChain:

python 复制代码
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
  • PipelinePromptTemplate: Helps combine multiple prompts.
  • PromptTemplate: Makes single, reusable prompt templates.

Step 2: Make the Final Prompt Template

This is the "big" prompt that will hold all the small parts. It uses 3 placeholders:

python 复制代码
full_template = """{introduction}
{example}
{start}"""
full_prompt = PromptTemplate.from_template(full_template)
  • full_template: The structure of the final prompt (with placeholders).
  • PromptTemplate.from_template(): Turns the text structure into a LangChain "prompt object" (so we can use it later).

Step 3: Make Small Reusable Prompts

We create 3 small prompts (each is a reusable part). Each has its own variables:

1. Introduction Prompt (sets who to impersonate)
python 复制代码
introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)
  • Uses {person}: We'll fill this in later (e.g., "Elon Musk").
2. Example Prompt (gives a sample interaction)
python 复制代码
example_template = """Here's an example of an interaction:
Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)
  • Uses {example_q} (sample question) and {example_a} (sample answer).
3. Start Prompt (asks for a real response)
python 复制代码
start_template = """Now, do this for real!
Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)
  • Uses {input}: The real question we want to ask later.

We make a list to connect each small prompt to its placeholder in the final prompt:

python 复制代码
input_prompts = [
    ("introduction", introduction_prompt),  # "introduction" → matches {introduction}
    ("example", example_prompt),            # "example" → matches {example}
    ("start", start_prompt)                 # "start" → matches {start}
]

Step 5: Create the PipelinePromptTemplate

We put the final prompt and the small prompt list together:

python 复制代码
pipeline_prompt = PipelinePromptTemplate(final_prompt=full_prompt, pipeline_prompts=input_prompts)

Step 6: Check Required Variables

To use the pipeline, we need to know all variables we must fill in. The original code shows these variables:

python 复制代码
pipeline_prompt.input_variables
# Output: ['example_a', 'person', 'example_q', 'input']
  • These come from the small prompts: person (from introduction), example_q/example_a (from example), input (from start).

3. Generate the Final Prompt

We fill in all required variables and print the result. The code and output are exactly as in the original:

Code to Format the Prompt

python 复制代码
print(pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Telsa",
    input="What's your favorite social media site?"
))

Final Output

复制代码
You are impersonating Elon Musk.
    Here's an example of an interaction: 
    
    Q: What's your favorite car?
    A: Telsa
    Now, do this for real!
    
    Q: What's your favorite social media site?
    A:

Key Takeaway (No Extra Info)

PipelinePromptTemplate helps you reuse prompt parts (like the "impersonate" or "example" sections) so you don't rewrite code. All parts combine to make one final prompt, and you only need to fill in the required variables.

相关推荐
忆~遂愿15 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
小韩学长yyds25 分钟前
Java序列化避坑指南:明确这4种场景,再也不盲目实现Serializable
java·序列化
仟濹26 分钟前
【Java基础】多态 | 打卡day2
java·开发语言
Re.不晚27 分钟前
JAVA进阶之路——无奖问答挑战2
java·开发语言
一切尽在,你来28 分钟前
第二章 预告内容
人工智能·langchain·ai编程
Ro Jace1 小时前
计算机专业基础教材
java·开发语言
mango_mangojuice2 小时前
Linux学习笔记(make/Makefile)1.23
java·linux·前端·笔记·学习
程序员侠客行2 小时前
Mybatis连接池实现及池化模式
java·后端·架构·mybatis
时艰.2 小时前
Java 并发编程 — 并发容器 + CPU 缓存 + Disruptor
java·开发语言·缓存
丶小鱼丶2 小时前
并发编程之【优雅地结束线程的执行】
java