自己动手写深度学习框架(感知机)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

所谓的感知机,其实本质上就是一个分类问题。假设一个事物有两个feature,那么可以根据这两个feature,来判断当前物体属于哪一个类别。判断的时候,有两种情况,一种是线性可分,一种是线性不可分。

1、or的情况

所谓的or,就是假设希望在1、0,0、1,1、1的时候,输出都是1。只有等到0、0的时候,才输出为0。这样讲起来,可能不是很直观,可以用一个图来表示,

如果是转换成python代码的形式,一般是这样的,

复制代码
def OR(x1, x2):
    x = np.array([x1, x2])
    w = np.array([0.5, 0.5])
    b = -0.2
    tmp = np.sum(w*x)+b
    if tmp <= 0:
        return 0
    else:
        return 1

这里的参数0.5、0.5、-0.2只是为了说明问题而存在的。实际开发过程中,比如深度学习,这些参数最终都是通过算法和大量的数据,迭代训练出来的。这里只是为了演示挑选出来的。

2、and的情况

有了or的情况,那么and也比较好理解了。那就是在0、0,1、0,0、1的时候都输出为0,只有等到1、1的时候,才输出为1。如果用上面的图形表示,就是左下方三个点属于一个类别,右上方的一个点属于一个类别。目测一下来,它也是可以找到这样一根判别线的。

3、nand的情况

nand和and是一样的,只是0、0,1、0,0、1的时候输出为1,只有等到1、1的时候,输出为0。看上出输出结果有点奇怪,但还是可以通过一根判别线进行线性可分的。

4、xor的情况

一切看上去都没有问题,也很完美。但是如果遇到异或这样的计算,问题就来了。因为,出现0、0,1、1的时候,输出为0。而只有等到0、1,1、0的时候,结果才是1。画成二维曲线的时候,就是这样的一种形式,

如果是这种情况,不管用什么直线,都是没有办法进行区分的。如果要区分的话,只能想办法构建非线性函数才能去区分。

5、怎么构建非线性函数

前面我们构建曲线的时候,都是直接在输入和输出之间,通过映射的方法去解决。其实还有一种办法,就是通过中间层的办法来解决,比如像这样,

复制代码
def XOR(x1,x2): # very important, similar to neuron network
    s1 = NAND(x1, x2)
    s2 = OR(x1, x2)
    y = AND(s1, s2)
    return y

对于输入的x1、x2,我们先计算s1、s2中间数据,然后再通过s1、s2去输出最终的结果。这样就可以达到我们的目的,即非线性分解,

这也就是多层网络的由来。感知机是神经网络的基础。里面的一些基本概念,比如激励函数,比如多层网络,这些和神经网络都是通用的。大家可以先理解一下感知机的概念,自己去写一些对应的python代码,这样或许印象会更加深刻一点。

相关推荐
工藤学编程23 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅1 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记