AI测试(含大模型)与普通测试的区别及实施方法

AI测试(含大模型)与普通测试的区别及实施方法

一、核心区别:从"确定性验证"到"概率性与场景化评估"

普通测试与AI测试(尤其是大模型测试)的本质差异,源于测试对象的"逻辑特性"不同------普通软件是"代码驱动的确定性系统",AI大模型是"数据驱动的概率性系统",具体差异可通过你提到的场景直观对比:


二、AI大模型测试的实施方法(结合你的工作场景)

以你参与的"上传SOP附件→AI自动生成方案"需求为例,AI测试的核心流程和测试点如下:

  1. 核心测试流程(基于工具链实操)
  2. 工具与工作流搭建:通过dify构建agent,配置"上传附件→prompt指令→AI解析→生成结果→返回业务方"的工作流(这是AI测试的前置基础,需确认工作流逻辑无漏洞)。
  3. prompt有效性验证:产品编写prompt后,测试需验证指令的"清晰度"和"业务贴合度"(如prompt是否明确"解析SOP的核心要素(目标、步骤、责任人)→按业务方常用格式生成方案",直接影响输出准确率)。
  4. 多场景数据测试:上传不同类型的SOP(如制造业生产SOP、互联网运营SOP;图片/文档格式),观察AI解析是否完整、生成的方案是否符合业务逻辑。
  5. 关键测试点(聚焦"效果+稳定性")
  • 功能效果测试:生成的方案是否覆盖SOP核心信息?格式是否符合业务方要求?(如业务方需要"分点式方案",AI是否避免生成大段文字)。
  • 性能与稳定性测试:模型响应速度是否在可接受范围(如上传10MB附件,生成方案耗时≤10秒)?高并发下是否崩掉(如同时上传5个附件,是否出现超时或结果丢失)?
  • 异常与伦理测试:上传非SOP附件(如图片、空白文档),AI是否友好提示"无法解析"?上传含敏感内容的SOP(如违规操作步骤),模型是否拦截或警示?

三、例子




四、总结:AI测试的核心能力要求

bash 复制代码
与普通测试相比,AI测试更需要"业务+工具+场景思维":
1. 懂业务:能理解SOP等需求的业务逻辑,才能判断AI生成结果是否合理;
2. 会用工具:熟悉dify等AI平台的工作流配置,能定位"工具-模型-数据"链路中的问题;
3. 场景化测试:不局限于"功能对不对",更关注"不同场景下模型表现好不好、安不安全"。
相关推荐
づ安眠丶乐灬1 天前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉
2503_928411561 天前
项目中的一些问题(补充)
人工智能·python·tensorflow
MarkHD1 天前
智能体在车联网中的应用 第1天 车联网完全导论:从核心定义到架构全景,构建你的知识坐标系
人工智能·架构
中科米堆1 天前
塑料制品企业部署自动化三维扫描仪设备,解决注塑件变形问题-中科米堆CASAIM
人工智能
星图云1 天前
从数据累积到精准解析:AI解译打造遥感数据高效利用新范式
人工智能·卫星遥感
飞哥数智坊1 天前
AI 大厂的“护城河”,也会成为它们的束缚
人工智能·创业
BB_CC_DD1 天前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
珠海西格电力1 天前
零碳园区物流园区架构协同方案
人工智能·物联网·架构·能源
向成科技1 天前
新品 | 向成电子XC3576M小体积主板,全面适配国产麒麟操作系统
人工智能·ai·解决方案·硬件·国产操作系统·麒麟系统·主板