YOLOv8目标检测项目实战(从训练到部署)

YOLOv8目标检测项目实战流程

环境准备 安装Python 3.8+和PyTorch 1.7+,使用官方推荐的CUDA版本。通过pip安装ultralytics包:

bash 复制代码
pip install ultralytics

数据准备 标注数据需转换为YOLO格式,目录结构应包含images/train、images/val和对应的labels文件夹。创建dataset.yaml配置文件:

yaml 复制代码
path: ./dataset
train: images/train
val: images/val
names:
  0: class1
  1: class2

模型训练 使用预训练权重启动训练,关键参数包括epochs、batch和imgsz:

bash 复制代码
yolo task=detect mode=train model=yolov8n.pt data=dataset.yaml epochs=100 imgsz=640

训练过程会自动记录到runs/detect/train目录,包含权重文件、评估指标和可视化结果。

模型验证 训练完成后验证模型性能:

bash 复制代码
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=dataset.yaml

输出包括mAP、precision-recall曲线等关键指标。

模型导出 部署前需转换为目标格式,例如ONNX或TensorRT:

bash 复制代码
yolo task=detect mode=export model=best.pt format=onnx opset=12

对于边缘设备,可导出为TensorRT格式提升推理速度。

部署应用 Python推理示例代码:

python 复制代码
from ultralytics import YOLO
model = YOLO('best.pt')
results = model.predict(source='input.jpg', save=True)

性能优化 针对部署环境调整参数:

  • 使用TensorRT加速时设置half=True启用FP16
  • 调整conf和iou阈值平衡检测精度与速度
  • 对于视频流处理,启用stream=True参数减少延迟

常见问题处理 训练中出现过拟合时可尝试:

  • 增加数据增强参数(flipud=0.5, translate=0.2)
  • 减小模型规模(选择yolov8s而非yolov8x)
  • 提前停止训练(patience=10)

部署时内存不足的解决方案:

  • 降低推理分辨率(imgsz=320)
  • 使用动态batch处理
  • 启用GPU内存优化选项
相关推荐
明月满西楼24 分钟前
4.2.1 分类任务
人工智能
AI_567832 分钟前
Webpack5优化的“双引擎”
大数据·人工智能·性能优化
LZL_SQ43 分钟前
昇腾NPU架构设计 从抽象硬件模型到物理实现
人工智能·昇腾·cann·ascend c
慎独4131 小时前
家家有平台:Web3.0绿色积分引领消费新纪元
大数据·人工智能·物联网
火云牌神1 小时前
如何选择FAISS的索引类型
人工智能·faiss
Gavin在路上1 小时前
SpringAIAlibaba之高级特性与实战场景全解析(5)
人工智能
会挠头但不秃1 小时前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
百***24372 小时前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
L.fountain2 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归