YOLOv8目标检测项目实战(从训练到部署)

YOLOv8目标检测项目实战流程

环境准备 安装Python 3.8+和PyTorch 1.7+,使用官方推荐的CUDA版本。通过pip安装ultralytics包:

bash 复制代码
pip install ultralytics

数据准备 标注数据需转换为YOLO格式,目录结构应包含images/train、images/val和对应的labels文件夹。创建dataset.yaml配置文件:

yaml 复制代码
path: ./dataset
train: images/train
val: images/val
names:
  0: class1
  1: class2

模型训练 使用预训练权重启动训练,关键参数包括epochs、batch和imgsz:

bash 复制代码
yolo task=detect mode=train model=yolov8n.pt data=dataset.yaml epochs=100 imgsz=640

训练过程会自动记录到runs/detect/train目录,包含权重文件、评估指标和可视化结果。

模型验证 训练完成后验证模型性能:

bash 复制代码
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=dataset.yaml

输出包括mAP、precision-recall曲线等关键指标。

模型导出 部署前需转换为目标格式,例如ONNX或TensorRT:

bash 复制代码
yolo task=detect mode=export model=best.pt format=onnx opset=12

对于边缘设备,可导出为TensorRT格式提升推理速度。

部署应用 Python推理示例代码:

python 复制代码
from ultralytics import YOLO
model = YOLO('best.pt')
results = model.predict(source='input.jpg', save=True)

性能优化 针对部署环境调整参数:

  • 使用TensorRT加速时设置half=True启用FP16
  • 调整conf和iou阈值平衡检测精度与速度
  • 对于视频流处理,启用stream=True参数减少延迟

常见问题处理 训练中出现过拟合时可尝试:

  • 增加数据增强参数(flipud=0.5, translate=0.2)
  • 减小模型规模(选择yolov8s而非yolov8x)
  • 提前停止训练(patience=10)

部署时内存不足的解决方案:

  • 降低推理分辨率(imgsz=320)
  • 使用动态batch处理
  • 启用GPU内存优化选项
相关推荐
陈天伟教授24 分钟前
基于学习的人工智能(4)机器学习基本框架
人工智能·学习·机器学习
studytosky37 分钟前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
做萤石二次开发的哈哈42 分钟前
11月27日直播预告 | 萤石智慧台球厅创新场景化方案分享
大数据·人工智能
AGI前沿1 小时前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
后端小肥肠1 小时前
小佛陀漫画怎么做?深扒中老年高互动赛道,用n8n流水线批量打造
人工智能·aigc·agent
是店小二呀1 小时前
本地绘图工具也能远程协作?Excalidraw+cpolar解决团队跨网画图难题
人工智能
i爱校对1 小时前
爱校对团队服务全新升级
人工智能
KL132881526931 小时前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel19902 小时前
人工智能的7大应用领域
人工智能