修改 lm-evaluation-harness 任务 yaml 的 prompt

修改 lm-evaluation-harness 任务 yaml 的 prompt,以gsm8k_cot_zeroshot.yaml 为例说明。

gsm8k_cot_zeroshot.yaml 在哪里?

如果使用的是 LM Evaluation Harness(lm_eval),文件一般在:

复制代码
<your_env>/site-packages/lm_eval/tasks/gsm8k/

可以直接在终端找到实际路径:

bash 复制代码
python -c "import lm_eval, inspect, os; print(os.path.dirname(inspect.getfile(lm_eval)))"

输出类似:

复制代码
/data/home/usr111/.conda/envs/llm_gpu/lib/python3.10/site-packages/lm_eval

那么 gsm8k 的配置就在:

复制代码
/data/home/usr111/.conda/envs/llm_gpu/lib/python3.10/site-packages/lm_eval/tasks/gsm8k/gsm8k_cot_zeroshot.yaml

📌 你要找的内容就在这个文件里

打开:

bash 复制代码
vim ~/.conda/envs/llm_gpu/lib/python3.10/site-packages/lm_eval/tasks/gsm8k/gsm8k_cot_zeroshot.yaml

会看到类似:

yaml 复制代码
doc_to_text: "Q: {{question}}\nA: Let's think step by step."

而想修改 prompt 是:

yaml 复制代码
doc_to_text: "Solve the following math problem step by step. The last line of your response should be of the form The answer is $ANSWER (without quotes) where $ANSWER is the answer to the problem.\n{{question}}\n Remember to put your answer on its own line after 'The answer is', and you do not need to use a \\boxed command."

⚠️ 注意:不要直接修改 site-packages 的文件!

未来更新/重装会被覆盖。

官方推荐两种方式:


方法 1(推荐):在本地创建自定义 task

创建目录:

复制代码
mkdir -p custom_tasks/gsm8k

新建文件:

复制代码
custom_tasks/gsm8k/gsm8k_cot_zeroshot.yaml

把你的版本粘进去:

yaml 复制代码
task: gsm8k_cot_zeroshot_custom

doc_to_text: |
  Solve the following math problem step by step. The last line of your response should be of the form The answer is $ANSWER (without quotes) where $ANSWER is the answer to the problem.
  {{question}}
  Remember to put your answer on its own line after 'The answer is', and you do not need to use a \boxed command.

doc_to_target: "{{answer}}"

然后运行:

bash 复制代码
lm_eval --tasks gsm8k_cot_zeroshot_custom

或:

bash 复制代码
accelerate launch eval_llada.py --tasks gsm8k_cot_zeroshot_custom

方法 2:直接覆盖原文件(简单但不推荐)

bash 复制代码
vim ~/.conda/envs/llm_gpu/lib/python3.10/site-packages/lm_eval/tasks/gsm8k/gsm8k-cot-zeroshot.yaml

然后把 prompt 改成你需要的。

相关推荐
lkbhua莱克瓦242 小时前
RAG到RGA:生成式AI的范式演进
人工智能·llm·prompt·大语言模型·rag·rga
da_vinci_x8 小时前
地编革命:手绘无缝地图太肝?3 分钟量产关卡地块
游戏·prompt·aigc·设计师·贴图·技术美术·游戏美术
醒醒该学习了!11 小时前
Prompt提示词——回复指令assistant(理论篇)
prompt
前端程序猿之路11 小时前
30天大模型学习之Day3:高级 Prompt 工程
人工智能·python·学习·语言模型·大模型·prompt·ai编程
The star"'11 小时前
Deepseek基础,模板引擎,prompt提示词,增强检索,智能机器人
python·机器人·云计算·prompt·easyui
lkbhua莱克瓦2411 小时前
Prompt、分词器与Token介绍
人工智能·ai·prompt·token
GISer_Jing1 天前
AI开发实战:从零搭建智能应用
人工智能·prompt·aigc
饭勺oO1 天前
AI 编程配置太头疼?ACP 帮你一键搞定,再也不用反复折腾!
ai·prompt·agent·acp·mcp·skills·agent skill
薛定谔的猫19821 天前
LlamaIndex(九)Prompt提示词
prompt
且去填词1 天前
DeepSeek :提示词工程 (Prompt Engineering) —— 人机交互时代的“新编程语言”
人工智能·prompt·人机交互·提示词工程·deepseek