torch常见操作

Tensor含义

Tensor(张量)可以看作是一个多维数组,它是标量、向量和矩阵向更高维度的扩展。

张量维度 数学等价物 实例说明(PyTorch创建示例)
0维 **标量 (Scalar)**​ 单个数值,如损失值:tensor(3.1416)
1维 **向量 (Vector)**​ 一维数组,如特征向量:tensor([1, 2, 3])
2维 **矩阵 (Matrix)**​ 二维数组,如全连接层权重:tensor([[1, 2], [3, 4]])
3维及以上 高阶张量 如RGB图像(3, 224, 224)、图像批次(16, 3, 224, 224)

Tensor的关键属性

  • 数据类型(dtype):指定张量中常见的数据类型,如torch.float32、torch.float64、torch.int64、torch.bool等
  • 设备(device):表明张量当前存储在何处,是cpu还是cuda:0(GPU)等
  • 形状(shape):一个元组,表示张量在每个维度上的大小。
  • 是否需要梯度(requires_grad):一个布尔值,指示是否需要为张量计算梯度。

Tensor常见操作

  1. torch.cat(torsors, dim)

dim=0 表示拼接行,dim=1 拼接列

比如

复制代码
import torch
A = torch.tensor([[1, 2, 3], [4, 5, 6]])
B = torch.tensor([[7, 8, 9], [10, 11, 12]])

torch.cat((A, B), dim=0)


"""
tensor([[ 1,  2,  3],
        [ 4,  5,  6],
        [ 7,  8,  9],
        [10, 11, 12]])
"""



torch.cat((A, B), dim=1)

"""
tensor([[ 1,  2,  3,  7,  8,  9],
        [ 4,  5,  6, 10, 11, 12]])
"""

参考资料:

https://cloud.tencent.com/developer/article/2345313

https://cloud.baidu.com/article/2995479

相关推荐
梵得儿SHI1 小时前
AI Agent 性能优化与成本控制:从技术突破到行业落地实战指南
人工智能·性能优化·智能路由·aiagent落地实践·成本控制和稳定性保障·提示词压缩·模型运行慢
IT·陈寒1 小时前
小智 AI 智能音箱 MCP 开发实战:从环境搭建到自定义语音技能完整指南
人工智能·语音识别·智能音箱
这张生成的图像能检测吗1 小时前
(论文速读)一种基于双目视觉的机器人螺纹装配预对准姿态估计方法
人工智能·计算机视觉·机器人·手眼标定·位姿估计·双目视觉·螺纹装配
TextIn智能文档云平台1 小时前
图片表格怎么转换成Markdown格式
人工智能·文档处理
zhaodiandiandian1 小时前
I浪潮下的就业重构:挑战、机遇与转型
人工智能·重构
从零开始学习人工智能1 小时前
PDF解析双雄对决:Unstructured vs PyMuPDF 深度对比与选型指南
数据库·人工智能·机器学习
黑客思维者1 小时前
SM1/SM2/SM3/SM4核心场景与实战案例深度解析
人工智能·加密·sm1/sm2/sm3/sm4
盟接之桥1 小时前
盟接之桥说制造:“盟接之桥”为何成了“断桥”?——制造企业困局突围的三重思考
大数据·人工智能·物联网·产品运营·制造
生成论实验室1 小时前
周林东的生成论入门十讲 · 第一讲 问题的根源——我们活在“制造的文明”里
人工智能·科技·神经网络·信息与通信·几何学