SVD介绍和代码示例

奇异值分解(SVD)介绍

奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解技术,广泛应用于推荐系统、图像处理和数据压缩等领域。SVD可以将一个矩阵分解为三个矩阵的乘积,从而提取出数据的潜在结构。

基本原理

给定一个矩阵 AA(通常是一个用户-物品评分矩阵),SVD可以将其分解为三个矩阵的乘积:

  • U:一个正交矩阵,包含了矩阵 AA 的左奇异向量,表示用户特征。
  • Σ:一个对角矩阵,包含了奇异值,表示特征的重要性。
  • VT:一个正交矩阵的转置,包含了矩阵 AA 的右奇异向量,表示物品特征。

通过保留前 kk 个最大的奇异值(和对应的奇异向量),可以得到一个低秩近似矩阵,从而减少数据的维度,保留主要特征。

Python 代码示例

以下是一个使用 numpy 实现奇异值分解的简单示例。

安装依赖

确保安装了 numpy

复制代码
pip install numpy
示例代码
复制代码
import numpy as np

# 示例评分矩阵(用户 x 物品)
R = np.array([[5, 3, 0, 1],
              [4, 0, 0, 1],
              [1, 1, 0, 5],
              [1, 0, 0, 4],
              [0, 1, 5, 4]])

# 进行奇异值分解
U, sigma, Vt = np.linalg.svd(R, full_matrices=False)

# 将奇异值转换为对角矩阵
Sigma = np.diag(sigma)

# 打印结果
print("U矩阵:\n", U)
print("\nSigma矩阵:\n", Sigma)
print("\nVt矩阵:\n", Vt)

# 选择前k个奇异值进行低秩近似
k = 2  # 选择前2个奇异值
U_k = U[:, :k]
Sigma_k = Sigma[:k, :k]
Vt_k = Vt[:k, :]

# 计算低秩近似
R_approx = np.dot(U_k, np.dot(Sigma_k, Vt_k))

print("\n低秩近似的评分矩阵:\n", R_approx)

# 为用户 0 推荐物品
user_id = 0
recommended_items = np.argsort(R_approx[user_id])[::-1]  # 按照预测评分降序排列
print("\n为用户 0 推荐的物品:\n", recommended_items)

Find More

代码解释

  1. 数据准备:创建一个用户-物品评分矩阵 RR。

  2. 奇异值分解 :使用 numpy.linalg.svd 函数对评分矩阵进行奇异值分解,得到 UU、ΣΣ 和 VTVT。

  3. 奇异值矩阵:将奇异值转换为对角矩阵 ΣΣ。

  4. 低秩近似

    • 选择前 kk 个奇异值和相应的奇异向量。
    • 计算低秩近似的评分矩阵 RapproxRapprox。
  5. 推荐物品:为指定用户(例如用户 0)推荐物品,根据低秩近似的评分矩阵排序,输出推荐物品的索引。

总结

奇异值分解是一种强大的降维技术,能够有效提取数据中的潜在特征。在推荐系统中,SVD可以通过低秩近似来生成个性化推荐。以上示例展示了如何使用 SVD 实现推荐功能,实际应用中可以根据需求进行扩展和优化。

相关推荐
Fcy6481 小时前
Linux下 进程(一)(冯诺依曼体系、操作系统、进程基本概念与基本操作)
linux·运维·服务器·进程
袁袁袁袁满1 小时前
Linux怎么查看最新下载的文件
linux·运维·服务器
代码游侠1 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法
Harvey9032 小时前
通过 Helm 部署 Nginx 应用的完整标准化步骤
linux·运维·nginx·k8s
珠海西格电力科技3 小时前
微电网能量平衡理论的实现条件在不同场景下有哪些差异?
运维·服务器·网络·人工智能·云计算·智慧城市
释怀不想释怀3 小时前
Linux环境变量
linux·运维·服务器
zzzsde3 小时前
【Linux】进程(4):进程优先级&&调度队列
linux·运维·服务器
聆风吟º5 小时前
CANN开源项目实战指南:使用oam-tools构建自动化故障诊断与运维可观测性体系
运维·开源·自动化·cann
NPE~5 小时前
自动化工具Drissonpage 保姆级教程(含xpath语法)
运维·后端·爬虫·自动化·网络爬虫·xpath·浏览器自动化
神梦流5 小时前
GE 引擎的内存优化终局:静态生命周期分析指导下的内存分配与复用策略
linux·运维·服务器