[论文][环境]DA3环境搭建_Ubuntu24

E 环境:

Ubuntu24.04

1 clone项目

bash 复制代码
git clone https://github.com/ByteDance-Seed/Depth-Anything-3.git

2 准备环境

2.1 依赖环境安装

需要先在本机安装CUDA,我安装的是11.8

2.1.1 GCC

先去CUDA官网的对应版本下面找到"Installation Guide Linux",比如我要安装11.8,就找11.8的"Installation Guide Linux"。

可以看到要求的版本是11,所以我们安装11,这一步骤解决的是failed to verify gcc version的错误。

bash 复制代码
sudo apt install gcc-11

安装之后,使用update-alternatives控制管理gcc的版本,我的系统里还有一个gcc-13

执行以下命令安装到update-alternatives,最后一个是权重

bash 复制代码
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 10

之后看一眼版本是否切换过去了。

bash 复制代码
gcc --version

2.1.2 CUDA

照着这个走就可以了

由于我之前打过显卡驱动了,这里我们就选择继续。

接收条款协议之后,记得把驱动取消勾选,之后选择安装即可。

按照提示,添加环境变量。注意这里自己的显卡驱动一定要达到要求大于520.00.

vim ~/.bashrc添加环境变量

bash 复制代码
export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda

source ~/.bashrc更新环境

检查环境是否可用:

bash 复制代码
nvcc --version

2.2 DA3环境配置

2.2.1 激活conda环境

bash 复制代码
cd Depth-Anything-3
conda create -n da3 python=3.10.8
conda activate da3

2.2.2 安装GPU支持包

bash 复制代码
pip install torch==2.3.1 torchvision==0.18.1 xformers --index-url https://download.pytorch.org/whl/cu118 # 根据你主机安装的CUDA版本走
# pip install torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu121 # 例如CUDA12.1可以用这个

这里应该检查一下,是不是正确安装了

python 复制代码
python #base
import torch
print(torch.__version__)           # 应该输出 2.3.1
print(torch.version.cuda)          # 应该输出 11.8
print(torch.cuda.is_available())   # 必须输出 True
exit() #base

2.2.3 安装其他

bash 复制代码
pip install -e . # Basic

pip install ninja # DA3要求本机编译,需要ninja

2.2.4 安装gsplat

这里我们不用DA3的README里面提供的安装指令安装,因为那个指令需要编译gsplat,我这边编译不过,Win那边编译过了,但是Ubuntu编译不过。所以直接使用官方提供好的二进制文件。

gsplat可以查看Github nerfstudio-project/gsplat

bash 复制代码
pip install ninja numpy jaxtyping rich
pip install gsplat --index-url https://docs.gsplat.studio/whl/pt23cu118

2.2.5 安装DA3应用

bash 复制代码
pip install -e ".[app]" # Gradio, python>=3.10
pip install -e ".[all]" # ALL

上面安装的gradio默认是最新的,目前我现在默认安装的是6.0,6.0更换了函数所属类。要使用旧版。

bash 复制代码
pip install addict
pip install gradio==5.49.1

如果没有报错就说明没有问题了。

3 使用方式

使用方式分为两种,API和CLI,这里使用CLI中的da3 gradio作为演示

https://github.com/ByteDance-Seed/Depth-Anything-3/blob/main/docs/CLI.md

可以查看上面的链接详细了解,

相关推荐
Coding茶水间3 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Salt_07287 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
m0_692457108 小时前
图像的几何变换
人工智能·计算机视觉
自己的九又四分之三站台8 小时前
OpenCV介绍
人工智能·opencv·计算机视觉
Coovally AI模型快速验证9 小时前
YOLO11算法深度解析:四大工业场景实战,开源数据集助力AI质检落地
人工智能·神经网络·算法·计算机视觉·无人机
Byron Loong9 小时前
【机器视觉】人物安全距离监测
python·yolo·计算机视觉
那雨倾城11 小时前
YOLO + MediaPipe 在PiscCode上解决多脸 Landmark 中「人脸数量固定」的问题
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
AndrewHZ11 小时前
【图像处理基石】[特殊字符]圣诞特辑:10+经典图像处理算法,让你的图片充满节日氛围感!
图像处理·人工智能·opencv·算法·计算机视觉·stable diffusion·节日氛围感
python机器学习ML12 小时前
论文复现-以动物图像分类为例进行多模型性能对比分析
人工智能·python·神经网络·机器学习·计算机视觉·scikit-learn·sklearn
自己的九又四分之三站台12 小时前
基于OpenCV扶正扫描文件
人工智能·opencv·计算机视觉·c#