Bézier 曲线

文章目录

  • [一、Bézier 曲线](#一、Bézier 曲线)
    • 1、历史背景
    • 2、定义
    • [3、常见低阶 Bézier 曲线](#3、常见低阶 Bézier 曲线)
    • [4、高阶 Bézier 曲线](#4、高阶 Bézier 曲线)
    • 5、关键性质
    • [6、de Casteljau 算法](#6、de Casteljau 算法)

前言:

在计算机图形学、动画设计、字体排版乃至汽车制造等领域,有一种数学工具被广泛使用,它既能精确描述复杂的曲线形状,又具备直观的几何控制方式这就是贝塞尔曲线(Bézier Curve)

一、Bézier 曲线

1、历史背景

贝塞尔曲线得名于法国工程师皮埃尔·贝塞尔(Pierre Bézier),他在20世纪60年代为雷诺汽车公司工作时,将其用于汽车车身的计算机辅助设计(CAD)。然而,几乎同时,另一位法国数学家保罗·德·卡斯特里奥在雪铁龙公司也独立发展出了一种类似的算法(即著名的 de Casteljau 算法)。尽管卡斯特里奥的工作更早完成,但由于其成果属于公司机密,直到多年后才公开,因此这一曲线最终以贝塞尔的名字广为人知。

2、定义

贝塞尔曲线是一种在计算机图形学中广泛使用的参数曲线 ,它由一组控制点定义 ,并通过一个参数 t 来生成平滑的曲线路径。

3、常见低阶 Bézier 曲线

4、高阶 Bézier 曲线

5、关键性质

  • 端点插值 :曲线始终从 P0 开始,在 Pn 结束。
  • 凸包性:曲线完全位于其控制点的凸包内部。
  • 对称性:若将控制点顺序反转,得到的曲线相同但方向相反。
  • 变差缩减性:曲线不会比控制多边形"振荡"更剧烈。
  • 可细分性 :可通过 de Casteljau 算法将曲线分割为两段,每段仍是 Bézier 曲线。

6、de Casteljau 算法

这是计算贝塞尔曲线上某一点的数值稳定且直观的方法。以三次贝塞尔曲线为例:

  • 对每对相邻控制点进行线性插值,得到三个新点;
  • 对这三个新点再次插值,得到两个点;
  • 最后对这两个点插值得到曲线上对应参数 t 的点。

该算法不仅用于求值,还可用于曲线细分,在渲染和碰撞检测中非常有用。

相关推荐
阿闽ooo44 分钟前
外观模式:从家庭电源控制看“简化接口“的设计智慧
c++·设计模式·外观模式
你的冰西瓜2 小时前
C++中的list容器详解
开发语言·c++·stl·list
CC.GG5 小时前
【C++】哈希表的实现
java·c++·散列表
bkspiderx6 小时前
C++变量生命周期:从创建到销毁的完整旅程
c++·生命周期·作用域·变量生命周期
T0uken7 小时前
现代 C++ 项目的 CMake 工程组织
c++
H CHY8 小时前
C++代码
c语言·开发语言·数据结构·c++·算法·青少年编程
xiaolang_8616_wjl8 小时前
c++题目_传桶(改编于atcoder(题目:Heavy Buckets))
数据结构·c++·算法
小小8程序员8 小时前
除了 gcc/g++,还有哪些常用的 C/C++ 编译器?
c语言·开发语言·c++
希望_睿智8 小时前
实战设计模式之中介者模式
c++·设计模式·架构
博语小屋10 小时前
转义字符.
c语言·c++