使用OpenVINO™加速部署通义Z-Image(造相)文生图模型

引言

【Z-Image-Turbo】(++https://huggingface.co/Tongyi-MAI/Z-Image-Turbo++) 是阿里巴巴通义团队最新推出的高性能文生图模型,基于 Diffusion Transformer (DiT) 架构,6B参数量,仅需不到10个steps的采样,就能够快速生成高质量图像。本文将详细介绍如何使用 Intel® OpenVINO™ 工具套件来优化和部署 Z-Image-Turbo 模型,在 Intel平台上上获得出色的推理性能。

内容列表

  1. 环境准备

  2. 模型下载和转换

  3. 模型部署

第一步,环境准备

基于以下命令可以完成模型部署任务在Python上的环境安装。

复制代码
python -m venv py_venv ./py_venv/Scripts/activate.bat pip uninstall -y optimum transformers optimum-intel diffuserspip install git+https://github.com/huggingface/diffuserspip install git+https://github.com/openvino-dev-samples/optimum-intel.git@zimagepip install nncfpip install torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0 --index-url https://download.pytorch.org/whl/cpupip install openvino==2025.4

第二步,模型下载和转换

在部署模型之前,我们首先需要将原始的PyTorch模型转换为OpenVINO™的IR静态图格式,并对其进行压缩,以实现更轻量化的部署和最佳的性能表现。通过Optimum提供的命令行工具optimum-cli,我们可以一键完成模型的格式转换和权重量化任务:

复制代码
optimum-cli export openvino --model Tongyi-MAI/Z-Image-Turbo --task text-to-image Z-Image-Turbo-ov --weight-format int4 --group-size 64 --ratio 1.0

其中Tongyi-MAI/Z-Image-Turbo为模型在HuggingFace上的model id, 可用原始模型的本地路径替换;--weight-format int4 --group-size 64 --ratio 1.0为模型量化参数,如果考虑出图质量,也可以用--weight-format fp16 替换。

第三步,模型部署

除了利用Optimum-cli工具导出OpenVINO™模型外,我们还在Optimum-intel中重构了Z-Image模型的Pipeline,将官方示例示例中的的ZImagePipeline替换为OVZImagePipeline便可快速利用OpenVINO™进行模型部署,完整示例可参考以下代码流程。

复制代码
import torchfrom optimum.intel import OVZImagePipeline
# 1. Load the pipelinepipe = OVZImagePipeline.from_pretrained(    "Z-Image-Turbo-ov", device="cpu")
prompt = "Young Chinese woman in red Hanfu, intricate embroidery. Impeccable makeup, red floral forehead pattern. Elaborate high bun, golden phoenix headdress, red flowers, beads. Holds round folding fan with lady, trees, bird. Neon lightning-bolt lamp (⚡️), bright yellow glow, above extended left palm. Soft-lit outdoor night background, silhouetted tiered pagoda (西安大雁塔), blurred colorful distant lights."
# 2. Generate Imageimage = pipe(    prompt=prompt,    height=512,    width=512,    num_inference_steps=9,  # This actually results in 8 DiT forwards    guidance_scale=0.0,     # Guidance should be 0 for the Turbo models    generator=torch.Generator("cpu").manual_seed(42),).images[0]
image.save("example_zimage_ov.png")

生图结果如下:

除此以外我们在OpenVINO™ notebook仓库中构建了更为完整的demo示例,展示效果如下:

总结

本文详细介绍了如何使用 OpenVINO™ 部署通义Z-Image-Turbo 模型,OpenVINO™为 Z-Image-Turbo 提供了显著的性能提升,作为轻量化模型的代表,Z-Image-Turbo特别适合在 Intel CPU/GPU 上进行推理部署。

参考资源

相关推荐
Think_Higher4 小时前
广告投放术语一文解读 CPM CPC CPA OCPC OCPM OCPA
经验分享
AI职业加油站5 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
宝宝单机sop17 小时前
事业单位资源合集
经验分享
小周不忙AI智能19 小时前
智能体来了:2026AI元年突破,AI生产力核心进化
经验分享
老师用之于民20 小时前
【DAY21】Linux软件编程基础&Shell 命令、脚本及系统管理实操
linux·运维·chrome·经验分享·笔记·ubuntu
GJGCY1 天前
2026主流智能体平台技术路线差异,各大平台稳定性与集成能力对比
人工智能·经验分享·ai·智能体
字节跳动的猫1 天前
2026四款AI 快速落地小项目
经验分享
方见华Richard1 天前
AGI安全三大方向机构对比清单(2025-2026)
人工智能·经验分享·交互·原型模式·空间计算
三水不滴1 天前
计算机网络核心网络模型
经验分享·笔记·tcp/ip·计算机网络·http·https
LaughingZhu1 天前
Product Hunt 每日热榜 | 2026-02-05
大数据·数据库·人工智能·经验分享·搜索引擎·产品运营