DAY 39 GPU训练及类的call方法

我感觉这个问题产生的原因是GPU和CPU在实际运行时候是异步的,可能存在很多别的线程占用资源,导致每次运行的结果并不是完全按照一定顺序进行的。但可能在进行很多次训练之后再对时间取平均值就有一个近似线性的关系了。以及内存的压力也很有可能对结果有影响。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt

# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型并移至GPU


# 训练模型
num_epochs = 20000  # 训练的轮数

# 用于存储每100个epoch的损失值和对应的epoch数
losses = []


avgs = []

counts = [2, 5, 10, 20, 50, 100, 200]

for count in counts:

    times = []
    for i in range(10):
        print(count, i)
        interval = 20000 // count

        start_time = time.time()  # 记录开始时间

        model = MLP().to(device)

        # 分类问题使用交叉熵损失函数
        criterion = nn.CrossEntropyLoss()

        # 使用随机梯度下降优化器
        optimizer = optim.SGD(model.parameters(), lr=0.01)

        losses = []
        for epoch in range(num_epochs):
            # 前向传播
            outputs = model(X_train)  # 隐式调用forward函数
            loss = criterion(outputs, y_train)

            # 反向传播和优化
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # 记录损失值
            if (epoch + 1) % interval == 0:
                losses.append(loss.item()) # item()方法返回一个Python数值,loss是一个标量张量
                print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
            
            # 打印训练信息
            # if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
            #     print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

        time_all = time.time() - start_time  # 计算训练时间
        # print(f'Training time: {time_all:.2f} seconds')
        times.append(time_all)

    average = sum(times)/len(times)
    avgs.append(average)

plt.plot(counts, avgs)
plt.xlabel('count')
plt.ylabel('time')
plt.xticks(counts) 
plt.title('Is there series?')
plt.show()



# 可视化损失曲线
# plt.plot(range(len(losses)), losses)
# plt.xlabel('Epoch')
# plt.ylabel('Loss')
# plt.title('Training Loss over Epochs')
# plt.show()

@浙大疏锦行

相关推荐
lili-felicity1 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性1 小时前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器1 小时前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
晚霞的不甘1 小时前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频
愚公搬代码1 小时前
【愚公系列】《AI短视频创作一本通》016-AI短视频的生成(AI短视频运镜方法)
人工智能·音视频
哈__1 小时前
CANN内存管理与资源优化
人工智能·pytorch
极新1 小时前
智启新篇,智创未来,“2026智造新IP:AI驱动品牌增长新周期”峰会暨北京电子商务协会第五届第三次会员代表大会成功举办
人工智能·网络协议·tcp/ip
island13141 小时前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
艾莉丝努力练剑1 小时前
深度学习视觉任务:如何基于ops-cv定制图像预处理流程
人工智能·深度学习
禁默1 小时前
大模型推理的“氮气加速系统”:全景解读 Ascend Transformer Boost (ATB)
人工智能·深度学习·transformer·cann