【pytorch】transform的使用

一、transforms的用法

transforms​ 是数据预处理与增强的核心工具,主要用于将原始图像转换为模型可接受的格式,并通过随机变换丰富数据集以提高模型泛化能力。

导入方式:

python 复制代码
from torchvision import transforms

主要用法,按顺序

python 复制代码
transform_pipeline = transforms.Compose([
    transforms.Resize(256),          # 调整图像大小至256x256(保持宽高比)
    transforms.CenterCrop(224),      # 从中心裁剪224x224区域(常用预训练模型输入尺寸)
    transforms.RandomHorizontalFlip(p=0.5),  # 以50%概率水平翻转(数据增强)
    transforms.ToTensor(),           # 将PIL图像转换为Tensor(像素值缩放至[0,1])
    transforms.Normalize(            # 标准化(使用ImageNet均值/方差)
        mean=[0.485, 0.456, 0.406],  # RGB通道均值
        std=[0.229, 0.224, 0.225]    # RGB通道标准差
    )
])

二、transform的使用

将PIL图像转换成Tensor类型

python 复制代码
from PIL import Image
from torchvision import transforms

img_path = r'data/train/ants_image/0013035.jpg'
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
print(tensor_img.shape)    #CHW

通过tensor()类型的数据生成tensorboard图

python 复制代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = r'data/train/ants_image/0013035.jpg'
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
# print(tensor_img.shape)    #CHW
writer = SummaryWriter('logs')
writer.add_image('tensor_img', tensor_img, 0)
writer.close()

Normalize()归一化使用

python 复制代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = r'data/train/ants_image/0013035.jpg'
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
# print(tensor_img.shape)    #CHW

writer = SummaryWriter('logs')
norm_trans = transforms.Normalize([0.485, 0.456, 0.406], [0.5, 0.5, 0.5])
norm_img = norm_trans(tensor_img)

writer.add_image('tensor_img', tensor_img, 0)
writer.add_image('norm_img', norm_img, 1)
writer.close()

归一化后的图片和未归一化的图片

Resize()调整大小的使用

python 复制代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = r'data/train/ants_image/0013035.jpg'
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
# print(tensor_img.shape)    #CHW

writer = SummaryWriter('logs')
norm_trans = transforms.Normalize([0.485, 0.456, 0.406], [0.5, 0.5, 0.5])
norm_img = norm_trans(tensor_img)

# print(img.size)
resize_trans = transforms.Resize((256, 256))
resize_img = resize_trans(tensor_img)
writer.add_image('resize_img', resize_img, 0)
# print(resize_img.size)
#Compose用法
trans_resize_2 = transforms.Compose([transforms.Resize((512)), transforms.ToTensor()])
img_resize_2 = trans_resize_2(img)


writer.add_image('tensor_img', tensor_img, 0)
writer.add_image('norm_img', norm_img, 1)
writer.add_image('img_resize_2', img_resize_2, 2)
writer.close()
相关推荐
二哈喇子!11 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
UnderTurrets14 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo36414 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
山土成旧客15 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习
二哈喇子!19 小时前
PyTorch与昇腾平台算子适配:从注册到部署的完整指南
人工智能·pytorch·python
二哈喇子!21 小时前
PyTorch 生态与昇腾平台适配实践
人工智能·pytorch·python
执笔论英雄21 小时前
【RL】中Token级策略梯度损失
人工智能·pytorch·深度学习
创作者mateo21 小时前
PyTorch 入门学习笔记(实战篇)二
pytorch·笔记·学习
IRevers1 天前
【目标检测】深度学习目标检测损失函数总结
人工智能·pytorch·深度学习·目标检测·计算机视觉
koo3642 天前
pytorch深度学习笔记12
pytorch·笔记·深度学习